Link between Spin Statistics Connection and Cosmic Gravity?

Aditya Gilra and C. S. Unnikrishnan

Fundamental Interactions Lab (Gravitation Group) Tata Institute of Fundamental Research, Mumbai – 400005, India. www.tifr.res.in/~filab/

> SpinStat2008, Trieste, Italy 24th October, 2008.

Aditya & Unnikrishnan (TIFR)

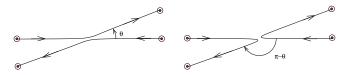
Spin-Stat - Gravity?

SpinStat2008 1 / 14

Outline

Spin-Statistics Connection from Dynamics?

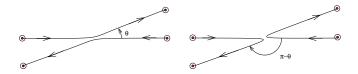
2 SSC from Gravity?


- Using Gravitoelectromagnetism
- Using Khriplovich Hamiltonian
- Merits of the proof

Inconsistency?

4 Atom-Atom Correlations Experiment

5 Future Directions


- Spin-Statistics Connection: Integer-spin identical particles are bosons (B-E statistics). Half-odd-integer spin identical particles are fermions (F-D statistics).
- Operationally: Two identical spin-s particles scattering: both spins perpendicular to plane of scattering.

- If *s* is integer/half-odd-integer, add/substract scattering amplitudes of the two processes.
- Proofs of SSC are kinematic mostly as a consistency condition in rel. QFT.

- A dynamical reason for SSC?
- If so, gravitational as gravity is the only known force coupling to all particles.
- In electrodynamics, all magnetic moments / magnetic effects are due to electric currents.
- Similarly taking spin as a matter current, obtain all spin related effects from coupling to matter currents?
- Try to get the relative \pm sign from some spin-dependent dynamics.
- Independent of the type of scattering interaction.

Dynamical phase required to get the relative sign

- A particle's momentum changes through angle θ at some angular velocity ω.
- Consider dynamical interaction $H_{int} = -s\omega$.
- Each particle picks up a phase $\exp(i \int s\omega dt) = \exp(is\theta)$ in the first process, and $\exp(is(\theta \pi))$ in the second.
- We get a relative phase between the processes exp(i2sθ - i2s(θ - π)) = exp(is2π) i.e. ±1 depending on s being integer/half-odd-integer.

- A particle's momentum changes through angle θ with respect to the cosmic frame (at some angular velocity ω).
- Friedmann-Robertson-Walker metric with flat spatial slices $ds^2 = -dt^2 + a(t)(dx'^2 + dy'^2 + dz'^2).$
- Transform to frame of particle (t, x, y, z): $x' = x \cos \omega t - y \sin \omega t, y' = x \sin \omega t + y \cos \omega t.$ • $g_{\mu\nu} = \begin{pmatrix} -1 + (x^2 + y^2) \omega^2 & -y\omega & x\omega & 0 \\ & -y\omega & 1 & 0 & 0 \\ & x\omega & 0 & 1 & 0 \\ & 0 & 0 & 0 & 1 \end{pmatrix}$ set $a(t_{now}) = 1.$
- Off-diagonal components => gravitomagnetic vector potential due to matter current in particle's frame.

GravitoElectroMagnetism

• Linearized approach GEM: $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ with $h_{\mu\nu} \ll 1$.

•
$$\bar{h}_{\mu\nu} = h_{\mu\nu} - \frac{1}{2}\eta_{\mu\nu}h$$
 where $h = \eta^{\mu\nu}h_{\mu\nu}$.

- GEM potentials $4\Phi = \bar{h}_{00}$ and $-2A_i = \bar{h}_{0i}$, $A_i = (\frac{1}{2}y\omega, -\frac{1}{2}x\omega, 0)$ (set $a(t_{now}) = 1$).
- In particle's frame, a rotating cosmic matter/energy current produces a gravitomagnetic field $\mathbf{B} = \nabla \times \mathbf{A} = (0, 0, -\omega)$.
- $\mu = q\mathbf{s}/2mc$, with q replaced by -2m gives $\mu_{\mathbf{g}} = -\mathbf{s}$ (set c = 1).
- The field interacts with the spin just as in electrodynamics $H_{int} = \mu_{m{g}}. {f B}$
- $H_{int} = -s\omega$.
- Exact result as this gravitomagnetic **B** gives the Coriolis force as a Lorentz force (talk by C.S.Unnikrishnan).

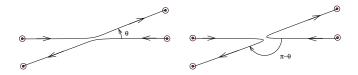
SSC via Khriplovich Hamiltonian

- Khriplovich¹ gives a convenient expression (in tetrad components except u_w^0) for $H_{int} = s^i \epsilon_{ikl} (\frac{1}{2} \gamma_{klc} + \frac{u^k}{u^0 + 1} \gamma_{0lc}) \frac{u^c}{u^0}$.
- e_a^{μ} are the tetrads of the particle's frame. $e_0^{\mu} = (1, \omega y, -\omega x, 0) = (\frac{\partial}{\partial t} + \omega y \frac{\partial}{\partial x} - \omega x \frac{\partial}{\partial y}), e_1^{\mu} = (0, 1, 0, 0) = \frac{\partial}{\partial x}, e_2^{\mu} = (0, 0, 1, 0) = \frac{\partial}{\partial y}, e_3^{\mu} = (0, 0, 0, 1) = \frac{\partial}{\partial z}.$
- $u^{c} = (\gamma, -\gamma \omega y, \gamma \omega x, 0)$ is the 4-velocity of the particle.
- $u_w^0 = \gamma$ (relativistic factor) is a coordinate component of the 4-velocity.
- $\gamma_{abc}=e_{a\mu;
 u}e^{\mu}_{b}e^{
 u}_{c}$ are the Ricci rotation coefficients

•
$$\gamma_{1,2,0} = -\omega$$
, $\gamma_{2,1,0} = \omega$ (others zero).

• $H_{int} = -s\omega$.

¹I.B. Khriplovich, *Spinning relativistic particles in external fields*, Acta Physica Polonica B Proceedings Supplement, **1**, 197, 2008.


Spin-Stat - Gravity?

SpinStat2008

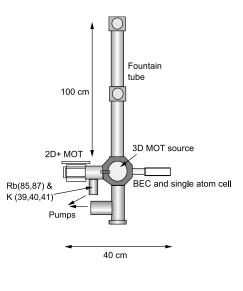
8 / 14

Aditya & Unnikrishnan (TIFR)

SSC from Gravity

- Each particle picks up a phase exp(-i ∫ H_{int}dt) = exp(isθ) in the first process, and exp(is(θ − π)) in the second.
- This is a dynamical gravity dependent phase over and above the phases due to scattering interaction.
- We get a relative phase between the processes exp(i2sθ - i2s(θ - π)) = exp(is2π) i.e. ±1 depending on s being integer/half-odd-integer.
- Proposed in C S Unnikrishnan, arXiv:gr-qc/0406043 v1, 2004.

- Dynamical proof based on cosmic gravity.
- Independent of scattering interaction.
- Positive proof i.e. goes beyond showing the impossibility of 'wrong statistics' for given spin.
- Applicable to any spin.
- Also shows why rotation based exchange proofs seem to work.


Inconsistent?

- Essential point for SSC: the phase picked up by a spin-s particle moving at angular velocity ω should be $\exp(-i \int H_{int} dt)$ with $H_{int} = -s.\omega$.
- Like spin-orbit coupling so compare with spin-orbit coupling in atom.

- Spin of electron rotating at ang. freq. ω precesses $ds/dt = s \times \omega_T$ at average (round trip) ang. frequency $\omega_T = (1 \gamma)\omega$: Thomas precession.
- Electrons in an atom, due to orbital motion at ang. frequency ω (spin-orbit coupling), pick up a Thomas correction to the energy $-s.(1-\gamma)\omega \simeq s\frac{1}{2}\frac{v^2}{c^2}\omega$ (manifests as fine-structure energy splitting between spin up and spin down states: $2s\omega_T$).
- NOT $H_{int} = -s.\omega$ (as needed for SSC)!!!

- Two neutral K-40 (fermionic) atoms captured in a steep magneto-optic trap / electric dipole trap.
- Ultra high vacuum 10^{-11} Torr.
- Cooled ($\sim 1\mu K$) to ground state of the trap.

- ullet Ground state width of Gaussian wave function \sim few μ m.
- Inter-particle separation $\sim \mu {
 m m}$.
- Optical resolution of imaging $\sim 1 \mu$ m.
- Spin-polarised atom-atom separation due to Pauli exclusion.

- The experimental fine structure splitting is seen as a consistency check for this proof.
- Try to get around the Thomas correction inconsistency to get Spin-Statistics Connection via gravitational dynamics.
- Side issue: Malykin (2006) and Ritus (2007) in Physics Uspekhi claim that Thomas precession frequency as seen in the lab frame is $\frac{\gamma-1}{\gamma}\omega$ and not the textbook result $(1-\gamma)\omega$: a sign difference and γ factor.
- Set up experimental capability to measure fermionic atom-atom correlations.