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Spin-statistics vrs. spin-locality

1 The spin-statistics connection and the spin-locality connection
are two different results.

2 The conclusions for each are different.

3 The assumptions for each are different.
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Spin-statistics connection

1 Particles that have integer spin must obey Bose statistics.

2 Particles that have odd half-integer spin must obey Fermi
statistics.

3 The spin-statistics connection concerns operators that create
and destroy particles; i.e. asymptotic fields, which are free
fields, considered by themselves.

4 When the connection is violated observables fail to be local,
i.e. violate microcausality.
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Spin-locality connection

1 Fields that have integer spin must have local commutatorss.

2 Fields that have odd half-integer spin must have local
anticommutators.

3 The spin-locality connection concerns the interacting field
operators.

4 When the connection is violated the interacting field operators
vanish.
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What quantum mechanics allows

1 Messiah’s “symmetrization postulate” (SP) that states of
several identical particles are either symmetric or
antisymmetric is equivalent to stating that identical particles
only occur in one-dimensional representations of the symmtric
group.

2 Concept of “ray” is replaced by “generalized ray.”

3 In the general case one-body measurements cannot specify a
state.

4 States in inequivalent representations of the symmetric group
cannot intefere–superselection rule.

5 With some further conditions (CPT, Q, B, L conservation) no
transitions between SP obeying and SP violating states can
occur.
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How can you violate the usual statistics by a small
amount?

1 The Hamiltonian (and all other observables) must commute
with permutations of the identical particles; otherwise they
would not be identical.

2 You can’t just add a small violating term, H = HO + HV ,
where HV doesn’t commute with permutations.

3 You also can’t introduce a new degree of freedom, like red
electrons and blue electrons.

4 That would double the pair production cross section.

5 Violating statistics by a small amount requires something
subtle.
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Doplicher, Haag, Roberts analysis

1 Three types of statistics occur in 3 or more space dimensions.

2 Parabose statistics, integer order p.

3 Parafermi statistics, integer order p.

4 Infinite statistics.

5 In less than three space dimensions, fractional statistics
(anyons) can occur.
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Parastatistics

1 H.S. Green noticed that free particles obey [H0, a
†
k ]− = ωka†k

for both Bosons and Fermions, provided H0 is properly
symmetrized, H0 = (1/2)

∑
k ωk [a†k , ak ]±.

2 Bose case is the anticommutator, Fermi case is the
commutator.

3 This leads to Green’s trilinear commutation relations,

4 [[a†k , al ]±, a
†
m]− = 2δlma†k

5 To choose the Fock-like representation, Green added the usual
vacuum condition, ak |0〉 = 0, and a condition on one-particle

states aka†l |0〉 = pδkl |0〉.
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Green’s ansatz

1 Green found an infinite set of solutions of his commutation
rules, one for each integer, with the ansatz

a†k =
∑n

p=1 b
(α)†
k , ak =

∑n
p=1 b

(α)
k , where the b

(α)
k and b

(β)†
k

are Bose (Fermi) operators for α = β but anticommute
(commute) for α 6= β for the “parabose” (“parafermi”) cases.

2 The index α is the “Green index.”

3 The integer p is the order of the parastatistics.

4 Messiah and I proved that Green’s ansatz give all Fock-like
representations of Green’s trilinear commutation relations.
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Physical interpretation

1 The physical interpretation of p is that, for parabosons, p is
the maximum number of particles that can occupy an
antisymmetric state, while for parafermions, p is the
maximum number of particles that can occupy a symmetric
state (in particular, the maximum number that can occupy
the same state).

2 The case p = 1 corresponds to the usual Bose or Fermi
statistics.
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Parastatistics as a quantum field theory

1 Norms of all states are positive, since sums of Bose and Fermi
operator create states with positive norms.

2 Local observables, properly symmetrized, are analogous to the
usual ones, for example, the local current for a spin-1/2
theory is jµ = (1/2)[ψ̄(x), γµψ(x)]−.

3 Clustering properties hold because both commutators and
anticommutators decrease exponentially (for massive fields)
for large spacelike separation.

4 The fields transform under the Poincaré group in the usual
way.

5 The spin-statistics connection holds.

6 The CPT theorem holds.
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Parastatistics as an interpolation between Bose and Fermi
theory

1 For p = 1 parabosons are Bosons. For p ≥ 2, p particles can
occur in an antisymmetric state.

2 For p = 1 parafermions are Fermions. For p ≥ 2, p particles
can occur in a symmetric state.

3 The violations of statistics provided by parastatistics are gross.
Parafermi statistics of order 2 has up to 2 particles in each
quantum state. High-precision experiments are not necessary
to rule this out for all particles we think are fermions.

4 The analogous statement holds for parabosons. Thus
parastatistics is not useful to describe small violations of
statistics.
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Relation between parastatistics, order p, and SU(p) or
SO(p) theories

1 Can relate parastatistics, order p, to a theory with a p-valued
hidden degree of freedom.

2 Use a Klein transformation to convert the Green component
fields with the “wrong” relative commutation relations to the
“normal” ones.

3 Ohnuki and Kamefuchi and Drühl, Haag and Roberts each
studied this.

4 With only baryon number zero observables, such as ψ̄γµψ,
one gets SU(p).

5 With baryon number non-zero observables, such as ψγµψ, one
gets SO(p).
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Apparent Violations of Statistics Due to Compositeness

1 Consider two identical Fermi nuclei at locations A and B.
Assume they have the same polarization.

2 In close proximity the exclusion principle may force each of the
nuclei into excited states with small amplitudes λA 6= λB .

3 Let the creation operator for the nucleus at location A be

N†A =
√

1− λ2
Ab†0 + λAb†1 + · · · , |λA| << 1 with the

analogous expression for the nucleus at B.

4 The creation operators obey [b†i , b
†
j ]+ = 0.

5 Then b†Ab†B |0〉 = [
√

1− λ2
AλB − λA

√
1− λ2

B ]b†0b
†
1|0〉,

‖b†Ab†B |0〉‖
2 ≈ (λA − λB)2 << 1, so, with small probability,

the two could even occupy the same location, because each
could be excited into higher states with different amplitudes.

6 This is not an intrinsic violation of the exclusion principle, but
only an apparent violation due to compositeness.
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Infinite statistics

1 Roger Hegstrom suggested to average the Bose and Fermi
commutation relations.

2 (1/2){[ak , a
†
l ]− + [ak , a

†
l ]+} = aka†l = δkl .

3 Cuntz algebra.

4 With the Fock-like vacuum condition, ak |0〉 = 0, can calculate
all matrix elements.

5 No condition on two a’s or two a†’s.

6 The norm of every monomial in a†’s acting on the vacuum is
one.

7 In particular, the norm of [a†(k)]n|0〉 is one.

8 No Gibbs correction factor. Get “quantum Boltzmann”
statistics.

9 All representations of Sn occur.
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Quon algebra

1 Can generalize Hegstrom’s idea.

2
1+q
2 [ak , a

†
l ]− + 1−q

2 [ak , a
†
l ]+ = aka†l − qa†l ak = δkl .

3 The quon commutation relations and the Fock vacuum
condition suffice to calculate all matrix elements.

4 No relation on aa or a†a† is needed and none can be imposed,
except for q = ±1.

5 Although such relations, [a, a]± = 0 are often written down,
they are not needed in the Bose and Fermi cases.

6 An analog of Wick’s theorem holds; in contrast to the Bose
and Fermi cases the terms have coefficients that are powers of
q rather than the ±1 of the Bose and Fermi cases.
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Physical significance of quons

1 All representations of the symmetric group on n objects occur.

2 For q → −1 the more antisymmetric representations
dominate.

3 For q → 1 the more symmetric representations dominate.

4 For q = 0 all representations occur with equal weight.

5 Quons give a small violation of statistics by producing a mixed
density matrix.

6 The smallness of the violation comes from the smallness of
the mixture of “abnormal”states.
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Positivity of norms, proof of Zagier

1 The proof that all norms are positive for −1 ≤ q ≤ 1 was
given by Zagier in a tour-de-force calculation of the
determinent of the n!× n! matrix of scalar products:

2 detMn
P,Q(q) =

∏n−1
k=1(1− qk(k+1))

(n−k)n!
k(k+1) .

3 I can’t explain Zagier’s calculation here, so I just give the
result.
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Positivity of norms, proof of Speicher

1 Speicher gave an independent proof of the positivity of norms
using an ingenious ansatz,

2 ak = limN→∞N−1/2
∑N

α=1 b
(α)
k .

3 This ansatz is the weak operator limit, not an operator
identity.

4 The b
(α)
k are bose oscillators for each α, but with relative

commutation relations given by

b
(α)
k b

(β)†
l = s(α,β)b

(β)†
l b

(α)
k , α 6= β, where s(α,β) = ±1.

5 Speicher considers the limit, N →∞, in the vacuum

expectation state of the Fock space representation of the b
(α)
k .
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Speicher’s probabilistic ansatz

1 To get the Fock-like representation of the quon algebra,
Speicher chose a probabilistic condition for the signs s(α,β),
prob(s(α,β) = 1) = (1 + q)/2, prob(s(α,β) = −1) = (1− q)/2.

2 Speicher’s rules reproduce the quon algebra.

3 The norms are positive since the sums of bose or fermi
operators have positive norms.

4 The constraint on q follows because the probabilities have to
lie between zero and one.

5 Speicher’s rules remind us of Green’s ansatz in parastatistics,
but Speicher’s rules are not an operator identity.
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operators have positive norms.

4 The constraint on q follows because the probabilities have to
lie between zero and one.

5 Speicher’s rules remind us of Green’s ansatz in parastatistics,
but Speicher’s rules are not an operator identity.
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Quon statistics for composite systems

1 Wigner, Ehrenfest-Oppenheimer (W,E-O) rule: composites of
bosons are bosons.

2 Composites of even (odd) numbers of fermions are bosons
(fermions).

3 For quons, qcomposite = qn2

constituent .

4 This reduces to the W,E-O rule for q = ±1.

5 This rule is not universally correct. For example, dyons, a
composite of a charge and a monopole do not obey this rule.

O.W. Greenberg Beyond Bose and Fermi Statistics



Quon statistics for composite systems

1 Wigner, Ehrenfest-Oppenheimer (W,E-O) rule: composites of
bosons are bosons.

2 Composites of even (odd) numbers of fermions are bosons
(fermions).

3 For quons, qcomposite = qn2

constituent .

4 This reduces to the W,E-O rule for q = ±1.

5 This rule is not universally correct. For example, dyons, a
composite of a charge and a monopole do not obey this rule.

O.W. Greenberg Beyond Bose and Fermi Statistics



Quon statistics for composite systems

1 Wigner, Ehrenfest-Oppenheimer (W,E-O) rule: composites of
bosons are bosons.

2 Composites of even (odd) numbers of fermions are bosons
(fermions).

3 For quons, qcomposite = qn2

constituent .

4 This reduces to the W,E-O rule for q = ±1.

5 This rule is not universally correct. For example, dyons, a
composite of a charge and a monopole do not obey this rule.

O.W. Greenberg Beyond Bose and Fermi Statistics



Quon statistics for composite systems

1 Wigner, Ehrenfest-Oppenheimer (W,E-O) rule: composites of
bosons are bosons.

2 Composites of even (odd) numbers of fermions are bosons
(fermions).

3 For quons, qcomposite = qn2

constituent .

4 This reduces to the W,E-O rule for q = ±1.

5 This rule is not universally correct. For example, dyons, a
composite of a charge and a monopole do not obey this rule.

O.W. Greenberg Beyond Bose and Fermi Statistics



Quon statistics for composite systems

1 Wigner, Ehrenfest-Oppenheimer (W,E-O) rule: composites of
bosons are bosons.

2 Composites of even (odd) numbers of fermions are bosons
(fermions).

3 For quons, qcomposite = qn2

constituent .

4 This reduces to the W,E-O rule for q = ±1.

5 This rule is not universally correct. For example, dyons, a
composite of a charge and a monopole do not obey this rule.

O.W. Greenberg Beyond Bose and Fermi Statistics



Conservation of statistics rules

1 The energy of widely separated sub systems must be additive.

2 This requires [H(x), φ(y)]− → 0, |x − y | → ∞.

3 For Fermi fields, this requires an even number of Fermi fields
in observables.

4 For parafields, this leads to selection rules.

5 This implies that in relativistic theories, quons must be either
Bosons or Fermions.

6 This result is independent of the failure of local commutativity
in quon theories.
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Anyons

1 Leinaas and Myrheim opened a new chapter in the study of
spin and quantum statistics in 1977.

2 Wilczek, Fröhlich, and many others have pursued this
possibility.

3 This has become a vast subject.

4 Spin and statistics of identical particles in one space
dimension.

5 Spin and statistics of identical particles in two space
dimensions.

O.W. Greenberg Beyond Bose and Fermi Statistics



Anyons

1 Leinaas and Myrheim opened a new chapter in the study of
spin and quantum statistics in 1977.
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How the space dimension enters–angular momentum

1 In one dimension there is no spin, since there is no axis to
rotate about.

2 In two dimensions there is only one generator for the rotation
group, so the group is abelian.

3 The quantization of angular momentum comes from the
nonlinear commutator of the rotation algebra, so angular
momentum is not quantized in two dimensions.

O.W. Greenberg Beyond Bose and Fermi Statistics



How the space dimension enters–angular momentum

1 In one dimension there is no spin, since there is no axis to
rotate about.

2 In two dimensions there is only one generator for the rotation
group, so the group is abelian.

3 The quantization of angular momentum comes from the
nonlinear commutator of the rotation algebra, so angular
momentum is not quantized in two dimensions.

O.W. Greenberg Beyond Bose and Fermi Statistics



How the space dimension enters–angular momentum

1 In one dimension there is no spin, since there is no axis to
rotate about.

2 In two dimensions there is only one generator for the rotation
group, so the group is abelian.

3 The quantization of angular momentum comes from the
nonlinear commutator of the rotation algebra, so angular
momentum is not quantized in two dimensions.

O.W. Greenberg Beyond Bose and Fermi Statistics



How the space dimension enters–one space dimension

1 In one dimension particle exchange requires the particles to
pass through each other.

2 Any phase that occurs upon transposition could be considered
to be a scattering amplitude rather than a statistical phase.
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How the space dimension enters–more than one space
dimension

1 For two identical particles in 2 space dimensions, go to center
of mass and relative coordinates.

2 Assume we remove coincident points and identify the points
that correspond to transposition of the particles.

3 This is irrelevant for the center of mass coordinate.

4 For the relative coordinate we get the plane with the origin
removed and antipodal points identified.

5 We move a point around a closed path in this space.

6 If the path can be contracted to the starting point, no phase
can occur from this motion.

7 If the path encircles the origin we cannot contract it and an
arbitrary phase can result.

8 Thus anyons occur in two dimensions.
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How the space dimension enters–more than one space
dimension–the representations of the rotation group,
O(D).

1 Quantum mechanics deals with ray representations.

2 At least for simple groups we can reduce ray representations
to true representations by going to the universal covering
group, whose group space is simply connected, i.e., in which
all paths are contractible.

3 We need the fundamental group (first homotopy group,
π1(O(D)) to tell us which paths are not contractible.
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How the space dimension enters–two space dimensions

1 For D = 2 the rotation group O(2) is isomorphic to the circle,
S1, which is infinitely connected, π1(O(D)) = Z , the group of
integers.

2 The covering group is the one-dimensional translation group,
isomorphic to the real line, R.

3 If the phase is a multiple of 2π, we get Bose statistics and
integral spin.

4 If the phase is an odd multiple of π, we get Fermi statistics
and half-integral spin.

5 All other cases give “anyon” statistics and arbitrary values of
spin.
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How the space dimension enters–three space dimensions

1 For D = 3 the rotation group O(D) is isomorphic to the ball,
S3, with antipodes identified.

2 The homotopy group is Z2.

3 The phase can be ±1.

4 If the phase is 1, we get Bose statistics and integral spin.

5 If the phase is an odd multiple of 1/2, we get Fermi statistics
and half-integral spin.

6 These results hold for all D ≥ 3.

O.W. Greenberg Beyond Bose and Fermi Statistics



How the space dimension enters–three space dimensions

1 For D = 3 the rotation group O(D) is isomorphic to the ball,
S3, with antipodes identified.

2 The homotopy group is Z2.

3 The phase can be ±1.

4 If the phase is 1, we get Bose statistics and integral spin.

5 If the phase is an odd multiple of 1/2, we get Fermi statistics
and half-integral spin.

6 These results hold for all D ≥ 3.

O.W. Greenberg Beyond Bose and Fermi Statistics



How the space dimension enters–three space dimensions

1 For D = 3 the rotation group O(D) is isomorphic to the ball,
S3, with antipodes identified.

2 The homotopy group is Z2.

3 The phase can be ±1.

4 If the phase is 1, we get Bose statistics and integral spin.

5 If the phase is an odd multiple of 1/2, we get Fermi statistics
and half-integral spin.

6 These results hold for all D ≥ 3.

O.W. Greenberg Beyond Bose and Fermi Statistics



How the space dimension enters–three space dimensions

1 For D = 3 the rotation group O(D) is isomorphic to the ball,
S3, with antipodes identified.

2 The homotopy group is Z2.

3 The phase can be ±1.

4 If the phase is 1, we get Bose statistics and integral spin.

5 If the phase is an odd multiple of 1/2, we get Fermi statistics
and half-integral spin.

6 These results hold for all D ≥ 3.

O.W. Greenberg Beyond Bose and Fermi Statistics



How the space dimension enters–three space dimensions

1 For D = 3 the rotation group O(D) is isomorphic to the ball,
S3, with antipodes identified.

2 The homotopy group is Z2.

3 The phase can be ±1.

4 If the phase is 1, we get Bose statistics and integral spin.

5 If the phase is an odd multiple of 1/2, we get Fermi statistics
and half-integral spin.

6 These results hold for all D ≥ 3.

O.W. Greenberg Beyond Bose and Fermi Statistics



How the space dimension enters–three space dimensions

1 For D = 3 the rotation group O(D) is isomorphic to the ball,
S3, with antipodes identified.

2 The homotopy group is Z2.

3 The phase can be ±1.

4 If the phase is 1, we get Bose statistics and integral spin.

5 If the phase is an odd multiple of 1/2, we get Fermi statistics
and half-integral spin.

6 These results hold for all D ≥ 3.

O.W. Greenberg Beyond Bose and Fermi Statistics



Experimental tests of statistics

1 Transitions between anomalous states

2 Accumulation in anomalous states

3 Deviations from the usual statistical properties of identical
particles

4 Stability of matter

5 Time dependence of onset, Corinaldesi, Shimony.
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Transitions between anomalous states

1 Goldhaber-Goldhaber experiment, qualitative.

2 Ramsey-Snow experiment, vF ≤ 1.7× 10−26.

3 VIP experiment, vF ≤ 4.5× 10−28.

4 Suggestions that extended objects (strings?) could produce
statistical phases.

5 I still don’t know a good argument for the scale at which we
can expect violations.
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Summary

1 Mainly discussed statistics in three of more space dimensions.

2 So far, no violations have been seen.

3 Two dimensions allows new types of statistics of great
importance in condensed matter systems, for example the
fractional quantum Hall effect.

4 Did not discuss braid statistics, related to anyon statistics for
several particles in two dimensions, or the connection to
Chern-Simon theory, or exclusion statistics (Haldane), or
non-extensive statistics.
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Thank you

In conclusion, I thank Professor Milotti and the
other organizers for arranging this workshop and for
asking me to speak here.
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