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Noncommutative geometry

has its roots in Heisenberg’ (and Born and Jordan and ...) matrix

formulation of quantum mechanics

which resulted in the replacement of the phase space by a

‘noncommutative space’

or, more precisely

the replacement of classical observable ( usual functions ) with

quantum ones ( infinite dimensional matrices )



Commutativity of algebra of functions on space X

is

localization of points of X

Quantum mechanics phase space noncommutativity:

px− xp = i~ ⇒ ∆p∆x ≥ ~

localization of points is ruled out



To incorporate limitations on spatial resolution one makes posi-

tions noncommuting as well

yx− xy = iθ

as a consequence

∆y∆x ≥ θ

Thus spacetime becomes noncommutative



The idea that spacetime geometry may be noncommutative goes

back to Schrödinger and Heisenberg

Heisenberg mentioned this possibility in a letter to Rudolph Peierls

in the 30s.

Peierls mentions Heisenbergs ideas to Wolfgang Pauli

Pauli explains it to Hartland Snyder

Snyder publishes the first paper on the subject in Physical Review

in 1941/42



Model of QHE on deformed (a.k.a. quantum) spheres

Phys motivation:

The Laughlin wave functions for the fractional quantum Hall
effect (on the plane) is not translationally invariant.

This problem was overcome by Haldane with a model on a sphere
with a magnetic monopole at the origin.

The full Euclidean group of symmetries of the plane is recovered
from the rotation group SO(3) of symmetries of the sphere.

One is considering the Hopf fibration of the sphere S3 over the
sphere S2 with U(1) as gauge (or structure) group

and needs to diagonalize the
Laplacian of S2 gauged with the monopole connection



The quantum group SUq(2)

q = e~ the deformation parameter

A = A(SUq(2)) is the ∗-algebra generated by a and c, and

ac = qca, ac∗ = qc∗a, cc∗ = c∗c,

a∗a+ c∗c = aa∗+ q2cc∗ = 1

these state that the defining matrix is unitary

U =

(
a −qc∗
c a∗

)

A(SUq(2)) is a Hopf ∗-algebra (a quantum group)



A U(1) principal bundle.

On A(SUq(2)) a right coaction of A(U(1)) = C < z, z−1 >:

∆R : A(SUq(2)) → A(SUq(2))⊗A(U(1))

∆R

(
a −qc∗
c a∗

)
=

(
a −qc∗
c a∗

)
.
⊗
(
z 0
0 z−1

)

the subalgebra of coinvariants

A(S2
q ) := {p ∈ A(SUq(2)) , ∆R(p) = p⊗ 1}

is Podleś standard sphere. Possible generators:

b− := −q(1 + q2)−
1
2 ac∗, b+ := q2(1 + q2)−

1
2 ca∗

b0 := aa∗ − (1 + q2)−1



The gauged Laplacian

�∇ := −1
2 ?∇ ?∇

A remarkable fact:
contrary to the classical limit case, the energies are not symmet-
ric under the exchange n↔ −n (this would correspond to invert-
ing the magnetic field axis) , not even when sending q ↔ q−1

λn,s = q−n−1
(
[s][n+ s+ 1] + 1

2[n]
)
, for n ≥ 0,

λn,s = q−n−1
(
[s− n][s+ 1] + 1

2[n]
)
, for n ≤ 0,

Notation

[x] =
qx − q−x

q − q−1
→ x as q → 1



A physics parallel with the quantum Hall effect: the integer s la-

bels Landau levels and the φn,s,l are the (‘one excitation’) Laugh-

lin wave functions with energies λn,s.

The lowest Landau, s = 0, is |n|-degenerate with energy

λn,0 = 1
2q
−n−1[|n|]

The classical limit. At the value q = 1, the energies of the

gauged Laplacian become

λn,s(q → 1) = J(J + 1)− 1
4n

2 = |n|(s+ 1
2) + s(s+ 1)

and coincide with the energies of the classical gauged Lapla-

cian. They are symmetric under the exchange n ↔ −n which

corresponds to inverting the direction of the magnetic field.



A bit of mathematics

(commutative) Gel’fand-Naimark correspondence:

commutative C∗-algebras ↔ locally compact Haus. spaces;

points x ∈ X are characters of C0(X)

x(f) := f(x)

(or 1-dim irreducible representations)



A (complex, unital) Banach algebra is a complex algebra equipped

with a complete normed vector space structure ; the norm and

the multiplicative structures are related by the identity

‖ab‖ ≤ ‖a‖‖b‖

An involutive Banach algebra satisfying the C∗-identity

‖a∗a‖ = ‖a‖2

becomes a C∗-algebra

For C0(X): ‖f‖∞ = supx∈M |f(x)|



Pathological spaces: not a good point-set theoretical description

Equivalence relation R on X;

the quotient Y = X/R can be bad even for good X

Classically: function on the quotient

A(Y ) := {f ∈ A(X) ; f is R− invariant}

often not many, only constant functions: A(Y ) = C



NCG approach:

the noncommutative algebra

A(Y ) := A(ΓR)

of functions on the graph ΓR ⊂ X×X of the equivalence relation

(of compact support, of rapid decay,...)

convolution product:

(f1 ∗ f2)(x, y) =
∑

x∼u∼y
f1(x, u)f2(u, y)

involution:

f∗(x, y) = f(y, x)



the quotient Y = X/R is a noncommutative space

with a noncommutative algebra of functions

A(Y ) := A(ΓR)

as good as X to do geometry:

exterior forms, metric, integration,

vector bundles, connections, curvature, ...

with new phenomena coming from noncommutativity



The celebrated irrational rotation algebra a.k.a.

the noncommutative torus

Aθ = C∞(T2
θ) ' C∞(S1/θZ) θ ∈ R−Q

a =
∑

(m,n)∈Z2

amn U
m
1 Un2 {amn} ∈ S(Z2)

U2U1 = e2πiθ U1U2

gauge fields on T2
θ



A dictionary :

Classical Noncommutative

locally compact space C∗-algebra

compact space unital C∗-algebra

vector bundle finite projective module

smooth manifold C∗-algebra with ‘smooth’ subalgebra

partial derivative unbounded derivation

integral tracial state

spin structure spectral triple

....



Requirements on noncommutative geometry dictated by physics

The noncommutative geometry of the standard model

Present knowledge of spacetime is described by two theories :

• General Relativity

• The Standard Model of particle physics

Gravity minimally coupled to matter :

S = SEH + SSM



the gravitational potential gµν

ds2 = gµνdx
µdxν SEH[gµν] =

1

G

∫
M
R
√
g d4x

the standard model SSM based on the gauge theory of the group

G = U(1)× SU(2)× SU(3)

The symmetries of S = SEH + SSM

G = Map(M,G) o Diff(M)

Is there a space so that G = Diff(X) ?

X can’t be a commutative space from the structure of G



it can be a noncommutative space !!

Almost commutative geometry: X = M × F

M Riemannian spin 4-manifold

F finite (i.e. metric 0-dimensional) geometry of

KO-dimendion (inner signature) = 6

A(X) = C∞(M)⊗AF , AF = C⊕H⊕M3(C)

D = D/ ⊗ I + γ5 ⊗DF DF out of fermion masses



Full standard model minimally coupled to gravity obtained from

S(geometry) = tr(χ(DA/Λ)) + 〈Jξ,DAξ〉

DA = D +A+ ε′JAJ−1

J extra structure dictating the KO-dimension (the signature) ;

more on this later if times allows

Λ a mass scale, χ is a cut-off function.

Bosonic action counts the eigenvalues of DA smaller than Λ



The simplest example

A = C∞(M ;Mn(C)) = C∞(M)⊗Mn(C)

Algebra of n× n matrices of smooth functions on manifold M

The group Inn(A) of inner automorphisms locally isomorphic to

the group G of smooth maps from M to the gauge group SU(n)

1→ Inn(A)→ Aut(A)→ Out(A)→ 1

becomes identical to

1→Map(M ;G)→ G → Diff(M)→ 1



(Connes-Chamseddine)

The pure gravity on this space yields Einstein gravity on M mini-

mally coupled with Yang-Mills theory for the gauge group SU(n)

The Yang-Mills gauge potential appears as the inner part of the

metric, in the same way as the group of gauge transformations

(for the gauge group SU(n)) appears as the group of inner dif-

feomorphisms



What is a metric in spectral geometry

d(A;B) = Inf
∫
γ

√
gµν dx

µdxν

Dirac’s square root of the Laplacian

(A,H, D) ds = D−1

d(A;B) = Supf∈A {|f(A)− f(B)| ; ||[D, f ]|| ≤ 0}



Kinematic relations

• The algebra A is commutative.

• The commutator [[D, a], b] = 0 for a, b ∈ A

this means that the operator D is differential of order one

• It holds that
∑
α a

α
0

[
[D, aα1][D, aα2], . . . , [D, aαn]

]
= 1

for some aαj ∈ A [T1, T2, . . . Tn] =
∑
σ ε(σ)Tσ(1)Tσ(2) · · ·Tσ(n)

Even case: 1→ γ5 (grading)

this means that the determinant of the metric gµν does not
vanish, and in fact more precisely that its square root multiplied
by the volume form

∑
α a

α
0 da

α
1 da

α
2 da

α
n gives 1 (or γ5)



Spectral conditions

• The k-th characteristic value of the resolvent of D goes like

λk ∼ k−1/n

this condition gives the metric dimension n

• Regularity for the geodesic flow expit|D|

• Absolute continuity.



The reconstruction

Let (A,H, D) be a spectral geometry fullfing the kinematic rela-
tions and the spectral conditions

Assume that the multiplicity of the action of A in H is 2n/2

Then there exists a smooth oriented compact (spinc) manifold
M such that A = C∞(M). Moreover D is a Dirac operator

The Einstein action is obtained by the spectral action

tr(χ(D/Λ))

which counting the number of eigenvalues of D of size < Λ
an expansion in Λ :

tr(χ(D/Λ)) ∼ Λ0vol(M) + Λ2
∫
M
R+O(Λ−2)



To get spin manifolds one needs additional data, a real structure

i.e. an antilinear unitary operator J acting in H

It plays the same role and has the same algebraic properties as

the charge conjugation operator in physics .

There are additional relations D, J and γ

J2 = ε(n)1, JD = ε′(n)DJ, Jγ = ε′′(n)γJ

ε(n) = (1, 1, −1, −1, −1, −1, 1, 1)
ε′(n) = (1, −1, 1, 1, 1, −1, 1, 1)
ε′′(n) = (1, , −1, , 1, , −1, )

n = 0,1, . . . ,7.

In the classical case of spin manifolds, the values of the three

signs depend only, upon the value of the dimension n modulo 8



In the classical case of spin manifolds

there is thus a relation between the metric (or spectral) dimen-

sion given by the rate of growth of the spectrum of D

and

the integer modulo 8 which appears in the above table

The dimension modulo 8 is called the KO-dimension because of

its origin in K-theory ; it is a signature

For more general spaces the two notions of dimension become

independent since there are spaces F of metric dimension 0 but

of arbitrary KO-dimension



Starting with an ordinary spin geometry M of dimension n and

taking the product M × F , one obtains a space whose metric

dimension is still n but whose KO-dimension is the sum of n

with the KO-dimension of F

It turns out that the Standard Model with neutrino mixing favors

the shift of dimension from the 4 of our familiar space-time

picture to 10 = 4+6 = 2 modulo 8



Noncommutative spin geometries

A spectral triple (A,H, D) is:

• a unital ∗-algebra A with a faithful ∗-rep. π : A → B(H),
H a (separable) Hilbert space,

• a self-adjoint operator D on H (“the Dirac operator”)

(i) (D + i)−1 is compact

(ii) [D,π(a)] is bounded for all a ∈ A

The spectral triple is graded (or even) if there exists a Z2-grading
operator γ on H, γ = γ∗, γ2 = 1, s.t.

γD = −Dγ, π(a)γ = γπ(a), a ∈ A



With 0 < µ < ∞, the spectral triple is µ+-summable (of metric

dimension µ) if (D2 + 1)−1/2 is in the Dixmier ideal Lµ+(H);

roughly µk(D) ∼ k1/µ as k →∞

A tracial state (an integral)

∫
− T = limω

1

logN

N−1∑
k=0

µk(T ) , ∀ T ∈ Lµ+(H) , T ≥ 0



M a compact Riemannian spin manifold (no boundary)

the canonical spectral triple on M : (C∞(M),H, D/ )

H := L2(M,S) the Hilbert space of spinors;

D/ the Dirac operator of the metric of M ;

C∞(M) act on spinors point-wise

it is m+-summable (of metric dimension m); m = dimM

(D2 + 1)−1/2 ∈ Lm+(H) is Weyl’s formula for the eigen.s of |D|:

µk(|D|) ∼ 2π

(
m

Ωmvol(M)

)1/m

k1/m as k →∞



The geodesic distance between any two points on M :

d(p, q) = sup
f∈C∞(M)

{|f(p)− f(q)| ; ‖[D/ , f ]‖ ≤ 1}

The Riemannian measure on M :∫
M
dµg f ∼

∫
−(f |D/ |−m)

the right hand sides in both furmulæ above

make sense for any spectral triple

in particular p, q are states of the algebra A

Note that Diff(M) = Aut(C∞(M)).



The (Eucledian) Einstein-Hilbert action obtained as:∫
− |D/ |2−m = −

(m− 2)2[m/2]Ωm

12m(2π)m

∫
M
R dµg

An evolution is the Spectral action :

S(geometry) = tr(χ(|D/ |/Λ))

with Λ a mass scale, χ is a cut-off function.

The action counts the eigenvalues of D smaller than Λ.

An expansion in Λ :

tr(χ(D//Λ)) ∼ Λ0vol(M) + Λ2
∫
M
R+O(Λ−2)



A real structure J of KO-dimension n ∈ Z/8Z;
an antilinear isometry J on H ,

J2 = ε(n)1, JD = ε′(n)DJ, Jγ = ε′′(n)γJ

ε(n) = (1, 1, −1, −1, −1, −1, 1, 1)
ε′(n) = (1, −1, 1, 1, 1, −1, 1, 1)
ε′′(n) = (1, , −1, , 1, , −1, )

n = 0,1, . . . ,7 .

J maps to the commutant

[π(a), Jπ(b)J−1] = 0, a, b ∈ A,

the first order condition on D

[[D,π(a)], Jπ(b)J−1] = 0, a, b ∈ A



Standard quantum field theories have many divergence problems;

main reason treat particles as point-like.

Problems of standard quantum field theories disappear in non-

commutative field theories

vast beautiful new territories out there

thank you !!


