Experimental Tests of the Spin-Statistics Connection and the Symmetrization Postulate

Robert C. Hilborn
University of Texas at Dallas

Supported by NSF, HHMI, Amherst College, and the University of Texas at Dallas

Outline

- Background
- Q-mutators and possible violations of the spin-statistics connection
- Experimental Tests
- Composite Systems
- Conclusions and Outlook

Symmetrization Postulate

$>$ Quantum states of identical particles are either symmetric or anti-symmetric under the interchange of particle labels.
$>$ Trivial for two-particle states but a significant limitation for $\mathrm{N}>2$.

Spin-Statistics Connection

- Fermions (anti-symmetric states) have spin quantum numbers of $1 / 2,3 / 2, \ldots .$.
- Bosons (symmetric states) have spin quantum numbers of $0,1,2, \ldots$
- Spin-Statistics "Theorem"
- Pauli 1940
- Many others 1950s
- Relativistic Quantum Field Theory +
->SSC is compatible with QFT

Statistics of Composites

- A composite of an odd number of fermions behaves like a fermion
- Otherwise, the composite behaves like a boson.
- Examples:
- H-atom, ${ }^{23} \mathrm{Na},{ }^{85,87} \mathrm{Rb}$ - "bosons"
- ${ }^{40} \mathrm{~K}$ atom - fermion
- ${ }^{16} \mathrm{O}$ nucleus - boson

Fundamental Principle

- If the particles are identical, observable results should not depend on how we label the particles.
- Permutation symmetry: observables are unchanged under permutation of the identical particle labels.
- (not physical exchange of particles)

Fundamental Theorem

$>$ For states with different permutation symmetries

$$
\left\langle\Psi_{1}\right| \hat{V}\left|\Psi_{2}\right\rangle=0
$$

Proof:
\hat{V} unchanged by permutation
of identical particle labels

$$
\mathrm{P}\left\langle\Psi_{a}\right| \hat{V}\left|\Psi_{s}\right\rangle=-\left\langle\Psi_{a}\right| \hat{V}\left|\Psi_{s}\right\rangle
$$

Consequences

- Permutation Symmetry of a system does not change with time
- Transitions between states of different permutation symmetry are strictly forbidden.
- Superselection Rule

Types of Experimental Tests of the SSC (spin-statistics connection)

- Transitions between "SSC-forbidden" energy levels
- Accumulation of particles in SSCforbidden states, e.g. atomic Li with all three electrons in the 1s orbital
- Deviations from standard fermion/boson statistics in bulk systems

Tests of the Symmetrization Postulate

- Need to look at systems with $\mathrm{N}>2$ identical particles
- Search for states associated with higher dimensional representations of the permutation group
- Possibilities: $\mathrm{NH}_{3}, \mathrm{OsO}_{4}$ etc.

How to Characterize Experimental Tests

- Density matrix formulation

Two-particle state: $s=$ symmmetric, $a=$ anti-symmetric

$$
\rho^{(2)}=A_{s}^{(2)} \rho_{s}^{(2)}+A_{a}^{(2)} \rho_{a}^{(2)}
$$

Three-particle state

$$
\rho^{(3)}=A_{s}^{(3)} \rho_{s}^{(3)}+A_{a}^{(3)} \rho_{a}^{(3)}+A_{m 1}^{(3)} \rho_{m 1}^{(3)}+A_{m 2}^{(2)} \rho_{m 2}^{(3)}
$$

Two 2-dimensional reps.

Q-mutators

- O. W. Greenberg, 1990

$$
a_{k} a_{j}^{\dagger}-q a_{j}^{\dagger} a_{k}=\varepsilon_{e} a_{k}, a_{j}^{\dagger} \dot{U}_{k}=\delta_{k j}
$$

q-mutator
$q=+1$ bosons
$q=1$ fermions
$-1<q<+1$ "quons"

q-mutators: I nterpretation

- In the q-mutator formalism

$$
\begin{aligned}
& A_{s}^{(2)}=\frac{1+q}{2} \quad A_{a}^{(2)}=\frac{1-q}{2} \\
& A_{s}^{(3)}=\frac{(1+q)\left(1+q+q^{2}\right)}{6} \quad A_{a}^{(3)}=\frac{(1-q)\left(1-q+q^{2}\right)}{6} \\
& A_{m 1}^{(3)}=\frac{(1+q)^{2}(1-q)}{3} \quad A_{m 2}^{(3)}=\frac{(1+q)(1-q)^{2}}{3}
\end{aligned}
$$

Transition amplitudes are proportional to $(1+q) / 2$ etc. after you take normalization into account.

Experimental Tests

- Electrons
- Nuclei
- Photons
- Symmetrization Postulate

Tests for electrons

- Bulk matter electrons
- Atomic electrons

A Non-Test of the Spin-Statistics Connection

Reines and Sobel, PRL 32, 954 (1974)

$(-1+q)^{2}<10^{-22}$
But, this analysis violates the
Fundamental Theorem:

$$
\left\langle\Psi_{s}\right| \hat{V}\left|\Psi_{a}\right\rangle=0
$$

Goldhaber and ScharffGoldhaber 1948

Original question: Are beta rays "identical" to electrons?
Reinterpret as test of the Pauli Exclusion Principle

Ramberg-Snow Experiment

Results: probability of making a transition to already occupied state $<10^{-26}$
Updated version: VIP Experiment, Pietreanu and colleagues

Atoms in SSC-violating States

- Example Be with (1s) ${ }^{4}$ in place of (1s) ${ }^{2}$ (2s) ${ }^{2}$
- High Precision Mass Spectrometry
- D. Javorsek, et al Phys. Rev. Lett. (2000) $\quad\left[\mathrm{Be}^{\prime}\right]<10^{-11}$ [Be]

Energy Levels in Atomic Helium Test for Electrons

- Deilamian, Gillaspy, and Kelleher 1995
- Atoms excited in electrical discharge

-SSC Forbidden $<10^{-6}$ SSC Allowed

Molecular Spectroscopy Tests for Nuclei

- Back to the beginning!

O_{2} Spectrum near 762 nm

Molecular Oxygen ${ }^{16} \mathrm{O}-{ }^{16} \mathrm{O}($ nuclear spin $=0)$

${ }^{16} \mathrm{O}$ results

- O_{2}
- Hilborn and Yuca (PRL, 1996)
- Tino et al (PRL, 1996)
- $(1-\mathrm{q})^{2}<5 \times 10^{-6}$
- CO_{2}
- Modugno et al (PRL, 1998, 2000)
$-(1-q)^{2}<1 \times 10^{-11}$
- Lien talk

Tests for Photons

- Planck Distribution for Thermal Radiation
- $\mathrm{J}=0$ to $\mathrm{J}=1$ two-photon transition
- Rydberg Atoms and Cavity QED

Thermal Radiation

$$
\begin{array}{ll}
N=2 ? & W=1 / k_{B} T \\
N=W]
\end{array}
$$

A
B

Thermal Radiation

Partition Function:

$$
Z_{N}={\underset{n}{n=0}}_{N}^{N} e^{-\beta h \nu n}=\frac{1-e^{-(N+1) \beta h v}}{1-e^{\beta h v} \text { Difference for } N=2}
$$

Mean occupation number: \square
à $n e^{-\beta h \nu n}$
$\bar{n}=\frac{n=0}{Z_{N}}$
density of modes: $\frac{8 \pi v^{2}}{c^{3}}$

Two-Photon Transition Between J $=0$ and $\mathrm{J}=1$ States in Atoms

- Budker, Demille, Brown, English et al

Particle physics experiments not very limiting.

Another Photon Test

C. G. Gerry and R. C. Hilborn, Phys. Rev. A

1. Detecting first atom in a certain state leaves the cavity photons in an "even" or "odd" coherent state.
2. Probability of finding the next atom in the same state $=1$ if the photons are pure bosons.
$\mathrm{P}_{\text {diff }}$ 累 $(1-q)^{2}$

Experimental Tests of the Symmetrization Postulate

- Need systems with N > 2 identical particles.

Polyatomic Molecules

- With three or more particles of the same type, the possibility of higherorder permutation symmetries (beyond symmetric and anti-symmetric)
- Higher-dimension representations of the permutation group

Polyatomic Molecules

-Christian Borde OsO_{4} (discussed by G.
Tino, Modugno, Inguscio, et al)
-The spin-vilbration hyperfine
interaction in the nu3 band of
1890sO4 and 1870sO4: a calculable example in high-resolution molecular
spectroscopy,
-C.R. Physique 5, 171-187 (2004).

Composite Systems

- Wigner (1929); Ehrenfest and Oppenheimer (1931):
- a composite with N fermions is a fermion if N is odd, otherwise a boson.
- Greenberg and Hilborn (PRL,1999)- what if spin-statistics violated?

Quon Composites

For a composite of N identical particles

$$
q_{\text {composite }}=\left(q_{\text {constituent }}\right)^{N^{2}}
$$

${ }^{16} \mathrm{O}$ nuclei in CO_{2} : 1 - $\mathrm{q}<3 \times 10^{-6}$ Modugno, Ingusicio, and Tino, Phys. Rev. Lett. 1998, 2000
i.e. probability proportional to $(1-q)^{2}$
-for nucleons 1 - $|\mathrm{q}|<1 \times 10^{-8}$
-for quarks $1-\mid$ q| $<1 \times 10^{-9}$

Conclusions

- SSC is consistent with QFT, but what about M-theory, supersymmetry, quantum gravity, etc. ??? Need some theory!
- Most experiments testing SSC are still rather crude.
- Experimental limits on violations of the SSC for composites can be used to set even lower limits for the constituents.

