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The LHC
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An accelerator that collides, 40 million times per second, protons against protons 
at center-of-momentum energies of 7 to13 TeV.  Collisions are analyzed by 8000 
scientists from 4 large collaborations to explore the fundamental structure of 
matter and its interactions.


Primary goal: settle conclusively the mechanism of spontaneous breaking of the 
electroweak symmetry that generates the masses of elementary particles.
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Done
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Not just Higgs

Hadron colliders at the energy frontier are 
machines with a broad discovery potential. 


Most LHC physicists search for signs of the 
existence of new particles or interactions.


With luck, this effort may lead to discoveries. 
Otherwise, it will offer an improved 
understanding of known phenomena, useful to 
inform/guide future scientific decisions.


LHC experiments produce O(1000) physics 
measurements each year.    
A proper statistical treatment of data is a key aspect of many of these 
measurements: minimize the risk of drawing wrong conclusions and maximize the 
amount and quality of extracted information. 



Like for all hadron colliders at the energy frontier, 
the premier goal of the LHC is to observe 
unexpected physics phenomena (if they exists 
within its reach) 

Hence, the chief LHC statistical challenge is to 
devise techniques to test efficiently whether the 
data support the solid observation of an 
unexpected physics phenomenon or not. 

5

https://prezi.com/mf2uwyozajj0/avalanche-imprevisible-et-vigilance/
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Why do I need statistics at all to discover anything?

https://prezi.com/mf2uwyozajj0/avalanche-imprevisible-et-vigilance/
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Not all sciences need statistics

An enthomologist has little doubt when he/she stumbles upon a previously 
unobserved insect. No need for histograms, or sophisticated data analysis. One 
“signal event” suffices when background is known to be zero certainly.
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Background only?

However, at the end of the day, it boil down to studying whether a small number of 
data distribution are compatible with expectations from known processes only 
(“background”) or if they indicate contributions of new phenomena as well (“signal”).

Zillions of collisions, each recorded through millions of electronic channels, and 
reconstructed using complex kinematic/dynamical constraints. A lot of information 
to process and digest.
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Or is there signal as well?

The challenge: how compatible data are with expectations from background? Is 
there a signal lurking? If so, what would be the statistical significance? And what is 
the most powerful way of telling the background apart from the signal+background ?



Today

10

• p-values, look-elsewhere-effect, 5-sigma folklore and all that

In god we trust, all others bring data 

 W. E. Deming
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What is the p-value plot? What is the local p-value? 
What is the look-elsewhere-effect?
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What does the “Brazil plot” mean? What is CLs?



Caveats
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I am not a statistician nor did I give any original contribution to statistics. Just an 
enthusiastic practitioner, somewhat educated through 10+ years of data analysis in 
collider experiments.


Please, please, please: do interrupt me to ask questions. This is essential to keep 
us awake. Also, feel free to follow-up at diego.tonelli@cern.ch


Will make my slides available to prof. E. Milotti soon so that he can share them.


mailto:diego.tonelli@cern.ch?subject=
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Is there a deviation? Is it significant?
Experimentalists often need to judge if an apparent anomaly in the observed data 
qualifies as a significant departure from the expectations of known phenomena or, 
rather, if it’s likely to arise from statistical fluctuations of known phenomena.


This is the first thing you do if you suspect you may have a discovery (and in many 
other less exciting cases)


At LHC (and in particle physics at large) this is mostly addressed using “p-values”, 
a (strongly debated) concept of frequentist statistics.  


A p-value is a random variable that provides a quantitative evaluation of the 
probabilities to be observing a genuine anomaly or a fluke. 


(Check this out for an entertaining piece on the birth of the p-value notion                                     
http://priceonomics.com/the-guinness-brewer-who-revolutionized-statistics/ )

http://priceonomics.com/the-guinness-brewer-who-revolutionized-statistics/
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Step1: p-value ingredients
Two hypotheses. 1. only known phenomena contribute (“bckg-only” — or “null” — 
hypothesis). 2. new phenomena contribute as well (“signal”  — or “alternate” — 
hypothesis)

Choose function x of the data (e.g., signal-event count), whose distribution under the 
null p(x|b) differs from that under the signal hypothesis p(x|s+b).  Construct both, p(x|
b) and p(x|s+b) (most labor-intensive step, typically done using simulation).  


Set, prior to looking at data, the acceptable false-positive rate: how signal-like the 
observed x should be to exclude the null? Or how background-like x should be to 
exclude the signal. 

function x of the data that is distributed differently btw the two hypotheses

Fr
eq

ue
nc

y 
of

 x p(x|b) p(x|s+b)



Step 2: look at the data  

That is, look at what particular value xobs the 
quantity x takes up in your data 
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Discovering a new effect 

The location of xobs  relative to the two shapes may offer a quantitative measure of 
the probability that one is observing a fluctuation or a new phenomenon.  


p-value is the relative fraction of the integral of the bckg-only model over values of 
x as signal-like as that observed and more. The smaller the p-value, the stronger 
the evidence against the null. If p-value < false-positive rate, the bckg-only is 
excluded at a confidence level CL = 1- (p-value).

Function x of the data

Fr
eq

ue
nc

y 
of

 x

xobsp(x|b) p(x|s+b)
p-value of the data 
with respect to the 

null hypothesis 

https://prezi.com/mf2uwyozajj0/avalanche-imprevisible-et-vigilance/
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Excluding a new effect
If the purpose is to exclude a new effect, one tests the signal hypothesis, and 
quotes the p-value with respect to that.


Is the relative fraction of the integral of the signal model over values of x as 
background-like as that observed and more. The smaller the p-value, the stronger 
the evidence against the signal hypothesis.

Function x of the data

Fr
eq

ue
nc

y 
of

 x

xobs p(x|s+b)))p(x|b)

p-value of the data with respect 
to the signal hypothesis 
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Testing nature the Popperian way

Cannot prove that an hypothesis is true, only that it is false.


“Discover” a signal by excluding its absence with a high level of 
significance (i.e., by observing that the probability to observe our data 
if background only contributes is tiny)                                             
“Exclude” a signal by excluding its presence with a high level of 
significance.


Karl Popper (1902-1994)

A p-value is not a probability!  It is a random variable (function of the data) that is 
distributed uniformly between 0 and 1 if the tested hypothesis is true.


It does not express the probability that an hypothesis is true or false!                  
Wrong claim “The measurement shows that the probability for hypothesis blah is ..”                                                                                                                             
P-values connect to the probability to observe xobs or a more extreme value if an 
hypothesis were true. Proper claim: “Assuming that the hypothesis blah holds, the 
probability to observe a fluctuation as extreme as that observed in our data or more 
is…”
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HEP lingo and folklore
Physicists have less feel for p-values than for “sigmas…” .HEP lingo goes like “at 
how many sigma such and such result is significant” 


The “number of sigma” (or z-value) is just a remapping of p-values into integrals of 
one tail of a Gaussian.  It expresses by how many sigma from the mean my 
observation would be if the test statistic x would be distributed as Gaussian
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Examples: p-values in coin tossing 
Check if a coin is fair. The probability to observe j heads in n trials is binomial


Null hypothesis: the coin is fair (p=0.5). Get 17 heads out of 20 trials. Regions of 
data space with equal or lesser compatibility with null, relative to j=17 include 
n=17, 18, 19, 20, 0, 1, 2, 3. 

P(n=0,1,2,3,17,18,19,or 20) = 0.26%.


Hence, if the null were true (coin is fair) and we would repeat the experiment 
many times, only 0.26% of the times we would obtain a result as extreme or 
more than that observed. 


f(j;n, p) =

✓
n

j

◆
pj(1� p)n�j =

n!

(n� j)!j!
pj(1� p)n�j
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p-values in mass peak
Suppose you measure a value x for each 
event and bin the resulting distribution.


The count in each bin is a Poisson 
random variable, whose mean in the 
bckg-only hypothesis is given by the 
dashed line


Observe a peak of 11 events in two 
central bins, with expected background 
3.2 events
P-value for the background-only hypothesis is P(n>=11, b=3.2, s=0) = 5*10-4


Is this evaluation fair or biased?
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Look-elsewhere 
It’s biased because it only accounts for the 
chances of a upward fluctuation in that very 
position at x~9.  


That’s the “local p-value”.


To get the “p-value” need to account for the 
chances that such excess could show up in any 
pair of adjacent bins.  With 20 bins (10 pairs of 
adjacent bins) the local p-value gets multiplied by 
≈10 to get the global p-value.

Lots of bins (that is, search channels) implies lots of chances at fluctuations. 


Peak could have been 
observed here

..or here
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Correcting for multiple testing

When quoting p-values, need to include the effect of multiple testing.


That is, properly accounting that we have also been “looking elsewhere” from the 
region where the anomaly is observed in our very data sample, but have dismissed 
all the search channels boringly showing uneventful, background-like behavior.


The larger the size of the test space, the higher the probabilities to observe rare 
fluctuations. 


That is why in HEP the standard conventional threshold for credibly claiming a solid 
observation of an unexpected effects is kept very high (5σ)


Claim a new effect only when the chances for it to be resulting from a fluctuation 
due to known phenomena are 0.000029% or less…
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Short aside (not LHC stuff) 

The birth of the 5σ criterion
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Far-out hadrons

In 1968, Art H. Rosenfeld at UC Berkeley 
surveyed the searches for exotic hadrons that did 
not fit the then-new static quark model.


He noted that the number of discovery claims 
quite matched with the number of statistical 
fluctuations expected in the data sets analyzed.


“[...]	This	reasoning	on	mul3plici3es,	extended	to	all	combina3ons	of	all	outgoing	par3cles	and	to	all	countries,	leads	to	
an	es3mate	of	35	million	mass	combina3ons	calculated	per	year.	How	many	histograms	are	ploAed	from	these	35	
million	combina3ons?	A	glance	through	the	journals	shows	that	a	typical	mass	histogram	has	about	2,500	entries,	so	
the	number	we	were	looking	for,	h	is	then	15,000	histograms	per	year.	[...]	Our	typical	2,500	entry	histogram	seems	to	
average	40	bins.	This	means	that	therein	a	physicist	could	observe	40	different	fluctua3ons	one	bin	wide,	39	two	bins	
wide,	38	three	bins	wide...	This	arithme3c	is	made	worse	by	the	fact	that	when	a	physicist	sees	'something',	he	then	
tries	to	enhance	it	by	making	cuts...”	

”	

Rosenfeld blamed the large mutliple testing corrections needed to account for the 
massive use of combination of observed particles to construct mass spectra 
containing potential exotic excesses.

https://prezi.com/mf2uwyozajj0/avalanche-imprevisible-et-vigilance/
https://prezi.com/mf2uwyozajj0/avalanche-imprevisible-et-vigilance/
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Far-out hadrons

“In	summary	of	all	the	discussion	above,	I	conclude	that	each	of	our	150,000	annual	histograms	is	capable	
of	genera3ng	somewhere	between	10	and	100	decep3ve	upward	fluctua3ons	[…]	To	the	theorist	or	
phenomenologist	the	moral	is	simple:	wait	for	nearly	5σ	effects.	For	the	experimental	group	who	has	
spent	a	year	of	their	3me	and	perhaps	a	million		 dollars,	the	problem	is	harder...	go	ahead	and	
publish...	but	they	should	realize	that	any	bump	less	than	about	5σ	calls	for	a	repeat	of	the	experiment.”

Rosenfeld also mentions the semiserious GAME test by his colleague, 
Gerry Lynch
“My	colleague	Gerry	Lynch	has	instead	tried	to	study	this	problem	‘experimentally’	using	a	‘Las	Vegas’	computer	program	

called	Game.	Game	is	played	as	follows.	You	wait	un3l	a	unsuspec3ng	friend	comes	to	show	you	his	latest	4-sigma	
peak.	You	draw	a	smooth	curve	through	his	data	(based	on	the	hypothesis	that	the	peak	is	just	a	fluctua3on),	and	
punch	this	smooth	curve	as	one	of	the	inputs	for	Game.	The	other	input	is	his	actual	data.	If	you	then	call	for	100	Las	
Vegas	histograms,	Game	will	generate	them,	with	the	actual	data	reproduced	for	comparison	at	some	random	page.	
You	and	your	friend	then	go	around	the	halls,	asking	physicists	to	pick	out	the	most	surprising	histogram	in	the	
printout.	Oben	it	is	one	of	the	100	phoneys,	rather	than	the	real	‘4-sigma’	peak.”	



Let’s play GAME 
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PS: Each histogram selected as the one with the most striking pair of adjacent bins from a set of 100 histograms generated 
according to a uniform distribution
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Two-bin bumps
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Two-bin bumps
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Two-bin bumps
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Two-bin bumps



End aside 
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Dealing with the effect of multiple testing

Various semiempiric recipes to determine a LEE-correction for local p-values.


Rough bump-hunting: multiply the local p-value by the range of the inspected 
histogram divided by the typical resolution on the inspected parameter.


Bonferroni-Dunn: multiply the local p-value by the number of independent models 
(not bins!) sought [C.E. Bonferroni, Teoria statistica delle classi e calcolo delle 
probabilità, Istit. Sup. di Scienze Econ. e Comm. di Firenze (1936); J.O. Dunn, Ann. 
of Mathematical Stat., 30 (1), 192 (1959) and J. of the American Stat. Assoc. 56 
(293) 52, (1961)]


Some issues: adjusted p-value can exceed unity (!); unclear how to account for 
empty histogram bins or for regions where new phenomena have already been 
excluded by previous experiments. 
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Dealing with the effect of multiple testing (cont’d)

Dunn-Sidak: global p-value  = 1- (1- local p-value)n  assuming n independent tests 
Z.K. Sidak, J. of the American Stat. Assoc. 62 (318) 626, (1967)


Gross-Vitells for bump hunt over smooth background: more involved but precise 
estimation of correction E. Gross and O. Vitells, Eur. Phys. J. C70, 525 (2010), 525 


Sufficient for a semiqualitative feel of the effect. Harder in analyses like Higgs 
searches, where p-value results from combining many channels, each contributing a 
different weight and entering with different experimental sensitivities.


Ideal would be a p-value of p-values. Take p-value as test statistic and look at the 
distribution of smallest p-values. Hard and laborious.
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Where is “elsewhere”?

Tenths, or hundreds, or thousands of 
distributions may have been inspected, in the 
same analysis or in other analyses.


Should we correct for these as well? 


How large is the testing space to base our 
correction on?   


Should we go back and correct previously published p-values when new 
analyses are completed?


(Arbitrary) guidance (consensus at the Banff 2010 Statistics Workshop):  limit 
the testing space to models (i.e, plots) that are inspected within a single 
published analysis
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The conventional “5σ rationale”

HEP experimenters conventionally agreed to deal with the LEE by setting a rather 
extreme standard for p-values to justify claims of new effects. 


One requires the null to be rejected with significance of 3.5σ (for “evidence”) and 5σ 
(“observation”), corresponding to very small p-values (fluctuations that occur 3 times 
every 10 million trials). (See www.huffingtonpost.com/victor-stenger/higgs-and-
significiance_b_1649808.html for an historical recollection)


The loose rationale is that such high thresholds should protect from the 
shortcomings discussed above. 

http://www.huffingtonpost.com/victor-stenger/higgs-and-significiance_b_1649808.html
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Does this actually protect?

Split A2 resonance, CBS and MMS 
collaborations, CERN mid-60ies          

http://arxiv.org/pdf/hep-ph/

ALEPH collaboration, CERN, 
Z. Phys. C71 (1996) 179


 


Observation of Pentaquarks                
CLAS Collab. PRL 91 (2003) 252001        
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….?

H1 pentaquarks  PLB 588 (2004) 17 
 CDF impossible event (1995) 


https://prezi.com/mf2uwyozajj0/avalanche-imprevisible-et-vigilance/
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An emerging pattern?
Claim	 Claimed	Significance	 Verified	or	Spurious	

Top	quark	evidence	 3	 True	

Top	quark	observa3on	 5	 True	

CDF	bbγ	signal		 4	 False	

CDF	eeggMEt	event	 6	 False	

CDF	superjets	 6	 False	

Bs	oscilla3ons	 5	 True	

Single	top	observa3on	 5	 True	

HERA	pentaquark	 6	 False	

ALEPH	4-jets	 4	 False	

LHC	Higgs	evidence	 3	 True	

LHC	Higgs	observa3on	 5	 True	

OPERA	v>c	neutrinos	 6	 False	

CDF	Wjj	bump	 4	 False	

LHC	750	GeV	diphoton	 4	 False	

A one-size-fits-all threshold seems not to fully encapsulate the complexity of the 
problem. Should one tune/correct the threshold based on the “a priori” expectation for 
the effect? (is 5σ adequate a threshold for significance of life on Mars?)



Another major issue: how does one include 
systematic uncertainties in p-values? 

41

https://prezi.com/mf2uwyozajj0/avalanche-imprevisible-et-vigilance/


What is systematics?
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Any statistical inference is based on p(x|m): observe x to extract information 
about m, assuming to know the distribution p(x|m), that is “the model”. 


The systematic uncertainty is that component of the uncertainty that is due to 
the imperfect knowledge about the shape of the probability distribution p(x;m).

G. Punzi

Hard to find a precise, rigorous definition. 


In experimental physics one assesses systematic 
uncertainties all the time, but when it comes to define them 
only semi-empiric definitions exist, based on examples.



Nuisance parameters
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Assume model p(x|m), which in general differs from the actual model. Difference is 
parametrized by introducing an additional dependence on unknown nuisance 
parameters.  Parameters that are not interesting for the measurement at hand but 
do influence its outcome.

p(~x|~m) ) p(~x|~m,~s)
Assumed model Actual model

Data
“Interesting” 
parameters

Nuisance 
parameters

The width of p(x|m) connects with the statistical uncertainty. The shape, which 
depends on nuisance parameters s, with the systematic uncertainty.      


Not only we don't know exactly what value of x would be observed if m had some 
definite value; we don’t even know exactly how probable each possible value of x is.  
Cannot define standard deviation for s; would imply knowing the distribution p(s). But 
then s wouldn’t be any longer a nuisance and would get embedded in the model! Can 
only estimate an allowed range for s, and ensure that any result of the inference hold 
for any s in that range.



Bayesian approach
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For Bayesians, s is just another parameter. Assume an a priori distribution for s that 
allows “integrating it out” through marginalization and use the result p(x|m) as 
model for any subsequent (Bayesian) inference.


p(~x; ~m) =

Z
p(~x; ~m,~s)p(~s)d~s

• A significant dependence of results on the chosen prior p(s) may occur


• Results from multiple measurements that are based on independent data but share 
nuisance parameters may get correlated (through common priors)


Avoid mixing frequentist and Bayesian approaches. E.g., don’t use marginalized 
p(x;m) to get frequentist confidence intervals. Hybrid results are harder to interpret. If 
the distribution of parameter s is assumed known, we are in Bayesian realm, hence 
rather assume known the distributions of all parameters




Incorporating systematic uncertainties in p-values
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In searches, typically the uncertainty is dominated by the statistical component 
associated with the small size of the event sample and/or the small signal-to-
background ratio. 


However, systematic uncertainties are there as well, and incorporating them into 
the p-value evaluation is needed, especially if there is the potential for a 
discovery (“extraordinary claims require extraordinary evidence”) 


How one does incorporate systematic uncertainties into p-values?



The problem
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p(x|b)

p(x|s+b)

p(x|s+b)p(x|s+b)

p(x|s+b)

Observed x

I don’t know which of the three curves approximates better the real s+b distribution 
and the p-value depends on which curve I use.                                                                    
Should I use this         ? Or  this     ? Or this                       ?

NB: for simplicity assuming 
nuisance on p(x|s+b) only. In 

most cases p(x|b) is also affected



Options
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Supremum p-value: calculate the p-value for any allowed value of nuisance 
parameters and quote the least significant p-value (black curve in our case).        
Pros: gets frequentist coverage whatever the value of nuisance parameters.    
Cons: if the space of nuisance parameters is multidimensional, lots of CPU 
needed because need to construct many predicted distributions of the test 
statistics p(x|s+b) and p(x|b), one for each choice of nuisance parameters.  Also, 
can “spoil” the sensitivity of the measurement as implausible choices of nuisance 
parameters could make p(x|s+b) very close to p(x|b).


Supremum p-value with Berger-Boos restriction as above, but with nuisance 
parameters restricted to a subspace based on their determination in data. Use 
data twice: once to calculate intervals for nuisance parameters, and another to 
calculate supremum p-values in that interval, then correct for the chance that the 
nuisance is outside the interval. Pros: mitigates the cons of the pure supremum. 
Cons: not obvious if no experimental determination is associated with nuisance 
parameters.                                                                                                                   
R. L. Berger and D.D. Boos, J. of the American Stat. Assoc. 89, 427 (1994), 1012



(Most popular LHC) options
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Plugin p-value: determine the central values of nuisance parameters in data (e.g., 
with a fit) and calculate the p-value for that choice of nuisance parameters.      
Pros: computationally fast.                                                                                        
Cons: coverage not guaranteed, subject to the major assumption that true values 
of nuisance parameters in nature are those determined by the fit.


Cousins-Highland p-value:  When constructing the predicted distributions of the 
test statistics , vary the nuisance parameters according to their prior distributions. 
Pros: computationally fast.                                                                                         
Cons: coverage not guaranteed, also admixture of Bayesian and frequentist 
reasoning which complicates interpretation. R.D. Cousins and V.L. Highland, Nucl. 
Instrum. Meth., A320, 331 (1992).                 



Issues with p-values
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Possible to get an observation 
that rejects both the null and the 

signal hypotheses

When searching for small signals with 
poor S-vs-B separation, sensitivity is low, 

which means that distributions of test 
statistics are nearly equal. Can make no 
statement about the signal, regardless of 

the outcome



The problem of spurious exclusion
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p(x|s+b)

p(x|b)

Observed x
x

Use the likelihood ratio x 


Test the hypothesis of the presence of a 
signal (s+b).


Typically, if p-value of the hypothesis s+b 
is smaller than 5%, signal gets excluded 
with 95% CL.


p-value of s+b

signal-like bckg-like



Spurious exclusion
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p(x|s+b)

p(x|b)

Observed x
x

p-value of s+b

signal-like bckg-like

1-(p-value of b)

Use the likelihood ratio x 


Test the hypothesis of the presence of a 
signal (s+b).


Typically, if p-value of the hypothesis s+b is 
smaller than 5%, signal gets excluded with 
95% CL.


However, when the distributions of the test 
statistic are similar, 1-pvalue of the 
background hypothesis  is just marginally 
higher than p-value of s+b. 



The CLs method
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signal-like bckg-like
Modified p-value with no rigorous statistical 
foundations but “works” fairly well. Allows for 
treating simultaneously exclusion and 
discovery and prevents from excluding 
hypotheses to which there is no sensitivity.


Base test on the pvalue for the s+b hypothesis 
scaled by (1-pvalue of b). Exclude only if 


CLs = [pvalue for s+b] / [1 - pvalue of b]


is small. Denominator increases the CLs thus 
preventing excluding signals for which there is 
no sensitivity.

p(x|s+b)
p(x|b)

p-value of s+bp-value of b

A conditional method inspired by similar methods (Zech, Roe&Woodroofe) 
developed for counting experiments.



A Poisson example
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CLs references and code

54

Popular references for CLs are A.L. Read, J. Phys. G Nucl. Part. Phys. 28 
(2002), 2693 and T. R. Junk, Nucl. Instr. and Methods in Phys. Res. A 434 
(1999), 435


If you ever wanna wet your feet with CLs here is some code and documentation 
that many turn out to be convenient http://www-cdf.fnal.gov/~trj/mclimit/
production/mclimit.html (CLs limits using Bayesian marginalization for the 
nuisance parameters — more on this later)

http://www-cdf.fnal.gov/~trj/mclimit/production/mclimit.html


Which function of the observables x to choose?
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Back to p-values. 


Can we exploit the arbitrariness in choosing the 
test quantity x?  Can we devise a function of the 
observables x that maximizes the power of my 
test at fixed false-positive rate. 


Pretty obvious in simple counting experiments. 
Less obvious in multiple-dimensional nonlinear 
problems



Neyman-Pearson lemma
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It does exist an universal statistic for optimal separation 
between the two hypotheses:  


Ratio between the likelihood for the signal+background 
hypothesis (H1) and the likelihood for the background-only 
hypothesis (H0)


The region W of acceptance of the null which minimises 
the probability to accept the null when the signal 
hypothesis is true is the contour


Any region that has the same false-positive rate would 
have higher rate of false negatives (technically, less power)

Jerzy Neyman 
(1894-1981)

Egon S. Pearson 
(1885-1980)

p(x|H1

p(x|H0)
> k↵



NP-lemma illustrated proof 
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Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Take a contour of the likelihood ratio that has a given rate α of false positives, that is 
a given probability under H0

Region Wc: if data fall there we 
reject H0; probability under H0 
is α



NP-lemma illustration 
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Take a variation that has the same rate α of false positives (same probability under 
H0)

Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Region Wc: if data fall there we 
reject H0; probability under H0 
is α



NP-lemma illustration 
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Take a variation that has the same rate α of false positives (same probability under 
H0)

Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Region Wc: if data fall there we 
reject H0; probability under H0 
is α



NP-lemma illustration 
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Because the region gained with the new contour was outside of the likelihood ratio 
contour and the region lost lost was inside it, the hierarchy between probabilities 
under H0 and H1 in the two regions is inverted.
Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Region Wc: if data fall there we 
reject H0; probability under H0 
is α



Likelihood-ratio is LHC’s most popular test statistic
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LR is convenient because (1) has optimal performance and (2) allows for testing with 
no need to laboriously construct distributions by generating and fitting pseudodata 
since its large-sample distribution is known (χ²)

1. Fit data under H0: i.e. with a likelihood 
that only has “background” parameters.


2. Fit data under H1: i.e. with a likelihood 
that includes n additional “signal” free 
parameters


3. The ratio between the resulting values of 
the likelihood functions at their maxima 
is distributed as a χ² with n degrees of 
freedom.


4. Comparison of the ratio obtained in 
data with the relevant χ² distribution 
allows for testing H1 vs H0.

χ²
LR observed in data

fit under H0 fit under H1



So, now you should be able to understand this
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Local p-value 
evaluated at 

various values 
of possible 
Higgs mass

Observed local 
p-value for the 
background-

only hypothesis 

Median expected p-
value for the signal

+background 
hypothesis 



..and this
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Exclusion limit for 
the Higgs signal 
strenght (cross-

section/SM cross 
section)  as a 

function of Higgs 
mass 

Observed limit

68.3% and 95.5% of the expected limits in 
the absence of signal 

These limits are 
based on CLs

Median expected 
limits in the 

absence of signal 



Grazie
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a voi per la vostra attenzione ed al Prof. E. Milotti per questa opportunita’.


