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The LHC
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An accelerator that collides, 40 million times per second, protons against protons at
center-of-momentum energies of 7 to13 TeV.

Collisions are analyzed by 8000 scientists from 4 large collaborations to explore the
fundamental structure of matter and its interactions.

Primary goal: settle conclusively the mechanism of spontaneous breaking of the

electroweak symmetry that generates the masses of elementary particles. i
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This paper is dedicated to the memory of our ATLAS colleagues who did not live to see the full impact and significance of their

contributions to the experiment.
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Not just Higgs

Hadron colliders at the energy frontier are natare.............
machines with a broad discovery potential. —
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Most LHC physicists search for signs of the

Observation of the rare Bs0 —u* ™ decay from the

existence of new particles or interactions. combined analysis of CMS and LHCb data
CMS Collaboration & LHCb Collaboration
Affiliations ' Contributions ' Corresponding authors

With some luck, the effort could result in Pactnd G 0ember e pccmnd 1 M 000 b el SO

discoveries. Otherwise, one reaches an improved
understanding of known phenomena, useful to
inform/guide future scientific decisions.

LHC experiments produce O(1000) physics
measurements each year.

A proper statistical treatment of data is a key aspect of many of these
measurements: minimize the risk of drawing wrong conclusions and maximize the
amount and quality of extracted information. 4



The chief LHC statistical challenge



Background only*?
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Huge number of collisions, reconstructed with complex infrastructures.

However, at the end of the day lots of analyses boil down to studying whether a data
distribution shows compatibility with what is expected from known processes only
(“background”) or if it indicates presence of new phenomena as well (“signal”).  °



Or is there signal as well?
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The challenge: how compatible data are with expectations from background? Is
there a signal lurking? If so, what would be the statistical significance? And what is

the most powerful way of telling the background apart from the signal+background ?
7




Today

* p-values, look-elsewhere-effect, 5-sigma and all that

* Role of modeling

- Systematic uncertainties

« Confidence regions with nuisance parameters.

 Punzi-effect and other miscellanea

In god we trust, all others bring data

W. E. Deming



What does the “Brazil plot” mean?
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What is the p-value plot? What is the local p-value?
What is the look-elsewhere-effect”?

2011 + 2012 Data

\s=7TeV: |Ldt=4.6-48fb"
\s =8 TeV: |Ldt=5.8-5.9 fb”

ATLAS Preliminary
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What is CLs?

CLs
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Caveats

| am not a professional statistician nor did | give any original contribution to
statistics. Just an enthusiastic practitioner, self-educated through 10+ years of
data analysis in collider experiments.

Please interrupt me to ask questions, will help keeping all of us awake. Also, feel
free to follow-up at diego.tonelli@cern.ch

Slides will be available shortly at www.pi.infn.it/~dtonelli/StatLHC

12


mailto:diego.tonelli@cern.ch
http://www.pi.infn.it/~dtonelli/StatLHC

Notation

Probably my notation won’t match the one you are used from Prof. Milotti’s course.
Apologies: | know this might be confusing, did not have the time to uniformize.

Will try to stick to minimal amount of notation. You should be able to follow most of
today’s talk by keeping in mind that | usually use

- X are observed data (e.g., diphoton invariant mass) or any function of them (e.g.,
likelihood ratio). It’s irrelevant whether x is one- or multi-dimensional.

* m are physics parameter to be measured (e.g., Higgs mass). Irrelevant whether m
IS one- or multidimensional

* p(x|m) is the probability density function for x given m.
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Testing hypotheses

P-values, look-elsewhere effect, and all that
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Significant deviation?

Experimentalists often need to judge if an apparent anomaly in the observed data
constitutes a significant departure from the expectations of known phenomena or if
it’s likely to arise from statistical fluctuations of known phenomena.

The first thing you do if you suspect you may have a discovery.

At LHC (and in particle physics at large) this is mostly addressed using “p-values”

A p-value is a random variable that provides a quantitative evaluation of the
probabilities to be observing a genuine anomaly or a fluke.

(Check this out for a funny piece about origin of p-values
http://priceonomics.com/the-guinness-brewer-who-revolutionized-statistics/ )
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Testing “signal+background” vs "background”

Need two hypotheses. Null hypothesis: only known phenomena contribute
(“background”). Signal hypothesis: new phenomena (“signal”) contribute as well.

obs b-only p-value

b-only s+b
PN
4 N\,
I/ \\
I’ \
/ \
\
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Arbitrary function x of the data that allows separating between the two hypotheses

Devise a function x of the data (e.g., signhal event count), whose pdf under the null
hypothesis p(x|mo) “differs” from the pdf under the signal hypothesis p(x|m1).

Distribution of x

Predict distributions of x under the two hypotheses (typically done using simulation)

Decide and fix prior to observation the false-positive rate: how far the observed value
of x should be from the core of p(x|mo) to exclude the null (i.e., favor signal.) 1




p-values

Make the observation. The “relative location” of the observation x with respect to the
two shapes offers a quantitative measure of the probability that one is observing a
fluctuation or a new phenomenon.

p-value is the relative fraction of the integral of the null model over values of x as
signal-like as that observed and more. The smaller the p-value, the stronger the
evidence against the null hypothesis. If p-value < false-positive rate, the null is
excluded at a confidence level CL = 1-(p-value).

Distribution of x

.—‘“

Arbitrary function x of the data that allows for separation between the two hypotheses




Model testing the Popperian way

Cannot prove that an hypothesis is true, only that it’s false.

“Discover” a signal by excluding its absence to an high-level of ‘
significance (that is by excluding that only background contributes).

f Karl Popper

Set limits to the existence of a signal by excluding to an high level o (1902-1994)

significance is presence.

p-value is not a probability!

It is a random variable (function of the data) that is distributed uniformly if the
tested hypothesis is true.

It does not express the probability that an hypothesis is true or false! It relates to
the probabillity that, if an hypothesis were true, one would observe x or a more
extreme value.
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INn one slide

This is p(x|m0), the distribution of x under the This is p(x|m1), the distribution of x under the
null hypothesis signal hypothesis

This is x, whatever

function of data whose
distribution is sensitive
to separate HO from H1

Type |l error rate Type | error rate a

-

-4 -3 -2 -1 0 1 R _ 4 S5 G 7 )
Standardised vanable 2z 5
Symbol Meaning
Q Rate of false positives (Type I error: reject Hy, while it was true)
15 Rate of false negatives (Type II error: reject Hy, while it was true)

19
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Folklore

Physicists’ lingo goes like “at how many sigma such and such result is significant”
We have less feel for p-values.

The “number of sigma” (or z-value) is just a translation of p-values using the
integral of one tail of a Gaussian. It expresses by how many sigma from the mean
my observation would be if the test statistic x would be distributed as Gaussian

Double_t zvalue = - TMath::NormQuantile(Double_t pvalue)

z-value (o) |p-value ovalue = (l - erf-( zvalue /A2 ))
1.0 0.159 I
04 f :
2.0 0.0228 °:§§
025 | —
e
' ] - o%;
5.0 2.87E-7 L e N

(1/SORT(243.1415)JoEXP{~Xea2/2)
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Examples: p-values in coin tossing

Check if a coin is fair. The probability to observe j heads in n trials is binomial

. o T ] B n—j _ n! B n—i
f(jin,p) = <j>p (1-p) e (1 -p)"

Null hypothesis: the coin is fair (p=0.5). Get 17 heads out of 20 trials. Regions of
data space with equal or lesser compatibility with null, relative to j=17 include
n=17,18, 19, 20, 0, 1, 2, 3.

P(n=0,1,2,3,17,18,19,0r 20) = 0.26% Hence, if the null were true (coin is fair) and
we would repeat the experiment many times, only 0.26% of the times we would
obtain a result as extreme or more than that observed.
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p-values In mass peak

Suppose you measure a value x for each g 10 . . .

event and bin the resulting distribution. = — data
B  --- expected background
The count in each bin is a Poisson
random variable, whose mean in the HO T
hypothesis is given by the dashed line |
4 -
s+ b)"
P(n;s,b) = (s +0) e~ (s+b) |
n! 2 _.--4-“'-'---‘--‘-___-
Observe a peak of 11 events in the 0 5 - - i
central bins, with expected background B
3.2 events. *

P-value for the background-only hypothesis is P(n>=11, b=3.2, s=0) = 5104

Is this evaluation fair or biased?



“Look elsewhere” effect

N(x)

— data — data

It does not account for the chances that an s | - oxpacas bacgrouns
excess could have arisen in any pair of adjacent

N(x)

- --- expected background

-]

bins. With 20 bins (10 pairs of adjacent bins) the ﬂ | I n |

p-value gets multiplied by =10. Foa-oar J_L\ﬂ o H(L 900
A - Tk

Lots of bins, lots of chances at fluctuations. Peak could have been ..or here

observed here

Need to correct for the effect of multiple testing (i.e., need to account that we are
also “looking elsewhere” from where we see an anomaly).

When quoting p-values, need to account for the size of the test space. The larger
the size, the higher the probabilities to observe rare fluctuations. Otherwise
significances may be grossly overestimated.
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Short aside (not LHC stuff)

The discovery of the Ooops-Leon particle

24
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Leon Lederman is a living legend. In the HEP
golden age of the ’60-70 he did many of the
key experiments that laid the foundations of
the Standard Model. In 1988, he got the
Nobel prize in physics for the discovery of the

muon neutrino.

In 1976, his group
announced the
observation of a new
particle produced by a
beam of protons on
Beryllium and decaying
Into e+ e- pairs, with a
mass of about 6 GeV.

Observation of High-Mass Dilepton Pairs in Hadron Collisions at 400 GeV

D. C. Hom, L. M. Lederman, H, P, Paar, H, D, Snyder, J. M, Weiss, and J, K. Yoh
Columbia University, New York, New York 10027+

and

J. A, Appel, B. C. Brown, C. N, Brown, W, R. Innes, and T. Yamanouchi
Feymi National Accelevator Laboratory, Batavia, Nlinois 60510%

and
D. M. Kaplan

State University of New York at Stony Brook, Stony Brook, New York 11794 *

(Received 28 January 1976)

We report preliminary results on the production of electron-positron pairs in the mass
range 2.5 to 20 GeV in 400-GeV p-Be interactions. 27 high-mass events are observed in
the mass range 5.5-10.0 GeV corresponding to ¢=(1.240.5)x10"%" em? per nucleon. Clus-
tering of 12 of these events between 5.8 and 6.2 GeV suggests that the data contain a new

resonance at 6 GeV,

e

B EEE———
25



The “Oops-Leon” particle

This was published and provided a very strong
candidate for the Upsilon, the bound state of a
(then still unobserved) fifth quark.

o,

6 7 8 g
Invariant ee mass

More data did not confirm the finding.

[Embarrassment_ ) ] a linear A dependence.,” We have studied the

probability for a clustering of events as is ob-
served here to result from a fluctuation in a
smooth distribution, e.g., Eq. (3). To avoid the

. . difficult bl involved in the statistical theo-
The erroneous first claim has been later tracked [ associated with small numbers of events per.

down to a mistake in the statistical evaluation of  resolution bin, a Monte Carlo method was used.

Histograms were generated by throwing events

the significance of the signal, which did not according to a variety of smooth distributions,
modulated by the mass acceptance, over the
prOperly accounted for the LEE. mass range 5.0 to 10,0 GeV. Clusters of events

as observed occurring anywhere from 5.5 to 10.0
GeV appeared less than 2% of the time.® Thus
the statistical case for a narrow (< 100 MeV) res-
onance is strong although we are aware of the

need for confirmation. These data, at a level of
T R s —————menaa_—w
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A couple of years later, the same group
found the real Upsilon meson, at 9.5
GeV using muon pairs and nobody
cared too much about the 6 GeV fluke,
which someone dubbed “Oops-Leon” in
a pun over Lederman’s name.

Observation of a Dimuon Resonance at 9.5 GeV in 400-GeV Proton-Nucleus Collisions
8. W, Herb, D, C. Hom, L. M. Lederman, J. C, Sens,'” H. D. Snyder, and J. K. Yoh
Columbia Untversity, New York, New York 10027
and

J. A. Appel, B. C. Brown, C, N, Brown, W, R. Innes, K. Ueno, and T. Yamanouchi
Fermi National Accelevalor Laborvatory, Batavia, Mlincis 60510

and

A, 8, Ito, H. Jostlein, D. M. Kaplan, and R, D, Kephart

State University of New York at Stomy Brook, Stowy Byook, New York 11974
(Recelved 1 July 1977)

Accepted without review at the request of Edwin L. Goldwasser under policy announced 26 April 1976

Dimuon production is studied in 400-GeV proton-nucleus collisions, A strong enhance-

ment {s observed at 9.5 GeV mass In a sample of 9000 dimuon events with a mass m . -
> 5 GeV.

et BN




How to deal with the effect of multiple testing

There are various semi-empiric recipes to determine an LEE-correction starting from
a “local” p-value: width/resolution, Bonferroni, Dunn-Sidak, Gross-Vitells,

Most of these are only useful to provide a semiquantitative feel of the severity of the
effect in simple cases. Cannot be applied to more complex analyses, where the final
p-value is the result of a combination of analyses in various channels, each
contributing different weight and with different experimental resolutions.

|deal solution: a p-value of p-values, that is use the p-values as test statistics an
look at the distribution of smallest p-values. Next to impossible (I don’t think has
ever been used in a realistic HEP analysis).

Note: interesting tradeoff between making your search as much broad as possible
(thus increasing the chances to find something) but not so borad that the LEE

spoils all sensitivity. Can an optimization be explored?
28



Where is “elsewhere””?

Also, it does not account for the possibility that
tenths, or hundreds, or thousands of _ .
distributions may have been inspected, in the ] ey — T——
same analysis or in other analyses. al U |

g 10 .
—= l — data
8

= expected background

N(x)

N

(] @© o

T

o N »~ =]

ﬂ _____ ﬂ
|Uwhﬂ

Should we correct for these as well?

How large is the testing space to base our
correction on?

Should we go back and correct previously published p-values when new
analyses are completed?

Guidance (consensus at the Banff 2010 Statistics Workshop): limit the

testing space to models (i.e, plots) that are inspected within a single
published analysis

29



The conventional “50 rationale”

Forgetting about the LEE is hardly the only mistake one can do.

“Tuning” of the data selection to artificially enhance signal-like statistical fluctuations
IS a serious threat if the selection isn’t frozen before looking at the signal regions

Forgetting to include systematic uncertainties in p-value determinations could lead to
false positives. Null should be rejected if the p-value is sufficiently small for all
allowed values of nuisance parameters.

HEP folks conventionally agreed to deal collectively with these possible pitfalls by
setting a rather high standard for p-values to justify claims of new effects. One
requires the null to be rejected with significance of 3.50 (for “evidence”) and 50
(“observation”), corresponding to very small p-values (fluctuations that occur 3 times
every 10 million trials). (See http://www.huffingtonpost.com/victor-stenger/higgs-and-
significiance b_1649808.html for an historical recollection)

Loose rationale: such high thresholds should protect from the effects above. ”


http://www.huffingtonpost.com/victor-stenger/higgs-and-significiance_b_1649808.html

Still....

35 % s | K\ Stonderd Processes ALEPH
30 > + [ Doto (@)
- 5 4
w25 @
! > §
. > §
b 20 3
=
g,:,ls ,
E
=10
T 010
5 —_
- [ : : L | o LAY \\W\\\\\J\ -
e Tm—— 0 Febams i iﬁnﬂtﬁg 80 8 00 120 140 160
g % 0] Bvidence for o spiing in 72 L2, coltielons In the two GERN expee T M@K [ GeVic ] 996) M (Gov/c)
Split resonance, CBS and MMS CLAS Collab., Phys.Rev.Lett. 91 (2003) 252001 ALEPH .
collaborations, CERN mid-60ies collaboration,
http://arxiv.org/pdf/hep-ph/ Significance = 5.2 + 0.6 & CERN mid 90ies.
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Which function of the observables x to choose”

Back to p-values. Arbitrariness in choosing the
test quantity x. Need to find a function of the
observables x that maximizes the power of my
tests at fixed false-positive rate. Pretty obvious
In simple counting experiments

Less obvious in multiple-dimensional nonlinear

problems
.’1_’\,]'

1| accept -

[G. Cowan]

Probability

0.05
0.045
004
0.035
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0.025
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0.015
001
0.005

....... [ee==cesemmfesmmmccemmjecemmeccemecee e mpm—e.———
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50 ﬁvents

...................................

60 80 100 120 140 160 180
Events Observed
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Neyman-Pearson Lemma

It can be demonstrated that such variable exist and it
Is the likelihood ratio (again!)

The region W of acceptance of the null which
minimises the probability to accept the null when the

signal hypothesis holds is a contour of the likelihood

ratio Jerzy Neyman  pqon S Pearson

p(x|H,
p(x|Ho)

> Kkq

Any region that has the same false-positive rate would
have higher rate of false negatives (technically, less
POWEY)
33



NP-lemma illustrated proof

Take a contour of the likelihood ratio that has a given rate a of false positives, that is
a given probability under HO

Region We: if data fall there we
reject HO; probability under HO
IS a

Region W: if data fall here we accept
HO; probability under HO is 1-a

34



NP-lemma illustration

Take a variation that has the same rate a of false positives (same probability under
HO)

Region We: if data fall there we
reject HO; probability under HO
IS a

Region W: if data fall here we accept
HO; probability under HO is 1-a

35



NP-lemma illustration

Take a variation that has the same rate a of false positives (same probability under
HO)

Region We: if data fall there we
reject HO; probability under HO
IS a

Region W: if data fall here we accept
HO; probability under HO is 1-a

P(\_|Ho) =

i

36



NP-lemma illustration

Because the region gained with the new contour was outside of the likelihood ratio
contour and the region lost lost was inside it, the hierarchy between probabilities
under HO and H1 in the two regions is inverted.

Region W: if data fall here we accept
HO; probability under HO is 1-a

Region We: if data fall there we
reject HO; probability under HO
IS a

"'5-lﬁ.fﬁjff;;;._; ( k‘ H 0) =P (// |HO) P(z|H,)
S, m > kq

P(x|Hy)
P(aly) ~ '

P(\_|H1) < P(\_|Ho)k, P(_/|Hy) > P(_/|Ho)k,

B\ B8 /1

The new region region has less power.
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Likelihood ratio

In most of the
choice is the li
under the null
hypothesis.

Imits and measurements made at the LHC, the test statistic of
Kelihood ratio, that is the ratio between the likelihood of the data

nypothesis and the likelihood of the data under the signal

38



Issues with p-values
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Can make no statement about the
signal regardless of the outcome
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Sensitivity

In searches for small signals with poor
sighal-to-background separation, the
analysis has hard times in telling apart
the possible presence of signal from
the fluctuations of the background.

Analysis sensitivity is poor, impling that
the distributions of the test statistics
are similar for the hypotheses of signal
+background and background only.

[—]
io
h

Probability density
R

(c)
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The problem of spurious exclusion

Use the likelihood ratio x signal-like bckg-like

Test the hypothesis of the presence of a

b
signal (s+b). Pxis+b)

/

Typically, if p-value of the hypothesis s+b
Is smaller than 5%, signal gets excluded
with 95% CL.

Observed x

p-value of s+b

41



Spurious exclusion

Use the likelihood ratio x

Test the hypothesis of the presence of a
signal (s+b).

Typically, if p-value of the hypothesis s+b
Is smaller than 5%, signal gets excluded
with 95% CL.

However, when the distributions of the
test statistic are similar, 1-pvalue of the
background hypothesis is just marginally
higher than p-value of s+Db.

signal-like bckg-like

p(X|s+b)

/

1-(p-value of b)

p(x|b)
7

P

Observed x

p-value of s+b

42



CLs

Modified p-value with no rigorous statistical
foundations. “Works” fairly well allows for signal-like bckg-like
treating simultaneously exclusion and
discovery and prevents from excluding
hypotheses to which there is no sensitivity.

05

flQ)

04

Base test on the pvalue for the s+b hypothes o.sf_
scaled by (1-pvalue of b). Exclude only if :

02|

p-value of b

CLs = [pvalue for s+b] / [1 - pvalue of b]

Is small. Denominator increases CLs if pvalue
thus preventing excluding signal to which
there is no sensitivity.

Inspired by similar methods (Zech, Roe&Woodroofe) developed for counting
experiments. 13



20Isson example

P(n<n, ls+b)

P(n <n

n, <n 8+ [)) —
Suppose <n,=>=100 s+b|""b 0

P(n<n, |b)
s(myy;)=30

Supposc n, =102

st+b=130

Prob(n_, <102]130)<5%, my,, is excluded at >95% CL

Now suppose s(my,)=1, can we exclude my,?
[fn, =102, obviously we cannot exclude my,,

Now suppose n_, =80, prob(n_, <80 | 101)<5%, we looks like we can exclude m,...
but this is dangerous, because what we exclude is (s(my;,)*b) and not s.... ..

With this logic we could also exclude b (expected b=100)

To protect we calculate a modofoed p-value Prob(nobs <801101)
We cannot exclude my,, Prob(nobs < 80 1100)
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Gauging the sensitivity of an analysis

45



Asimov approximations for median sensitivities

46



Slind analyses
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S0, Now you should be able to understand this

2011 + 2012 Data

\s=7TeV: |Ldt=4.6-48fb"
\s=8TeV: |Ldt=5.8-59 fo

ATLAS Preliminary

""""" 66
300 400 500 600
my [GeV]
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Neyman construction

J. Neyman came up with a mathematically rigorous and very
elegant procedure that allows constructing confidence intervals
with the desired level of coverage

Jerzy Neyman (1894-1981)

X—OQutline of a Theory of Statistical Estimation Based on the
Classical Theory of Probability
By J. NEYMAN

Reader in Statistics, University College, London

(Communicated by H. JErFreys, F.R.S.—Received 20 November, 1936—Read 17 June, 1937;



Neyman construction illustrated

For each possible true value of parameter m, consider p(x|m). lts shape can vary
as a function of m.

p(x|m)

VAR
A N
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Neyman illustrated |

Take a specific value mo of the parameter

p(x|mo)
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Neyman illustrated |l

Define, using the p(x|mo) associated to that parameter, an acceptance range in x,
such that p(x € range | mo) = 68%.

52



Neyman illustrated Il

Note that such region is not unique. | could also have chosen to put an upper limit
at 68% CL...
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Neyman illustrated Vi

...or a central limit.

The criterion of choice of the region is chosen is the ordering rule (because it’s the
algorithm one uses to order the probability until an amount corresponding to the
chosen confidence level (68%, in our example) is reached.

p(x|mo)

A
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Neyman illustrated V

Derive the acceptance region for every possible true value of the parameter m

p(z|m)

A
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Neyman illustrated VI

This defines a confidence belt for m.

p(z|m)

o
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Neyman illustrated VI

Then you do your analysis on data, and observe a value xo. The observed value
Intersects the confidence belt. The union of all values of m for which acceptance
ranges are intersected by the measurement defines the confidence interval [m_(x)

m.(x)] at the 68% CL for the parameter. Note that the extremes of the interval are
random variables (functions of data x)

™m

//(/ =
= :

T
mo
/ ’
. o . . . .
In repeated experiments, the confidence intervals will have different boundaries, but

68% of them will contain the (unknown) true value of the parameter m 57



Why does it work”?

Make a measurement xo and determine the corresponding confidence interval, For
every true value m of the parameter, say my, included in the interval, 68% of the
measurements would be in the acceptance region. Each of the measurements will
lead to a confidence interval that contains mz2 . Hence, the interval contains the true

value with 68% probability, m € [m_, m,] at the 68% CL.
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Simple numerical example

Bags of various classes: each class contains a different fraction of white balls
(1%, 5%, 50%, 95%, and 99%). Extract N=5 balls from each bag. Would like
to infer to which class each bag belongs

True fraction of white balls

3 1% 5%
g 5 1010 | 3*107
- 4 5*108 | 3*10°
QO

< 3 10° 0.1%
; 2 0.1% 2.1%
o 1

-

> 0

4.8% | 20.4%
95.1% | 77.4%




Ordering

The ordering algorithm is arbitrarily chosen. The only constraint is that, for each
value m of the parameter, the integral of the pdf along the x region outside of
the belt does not exceed 1-CL.
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Ordering guidelines

Despite arbitrariness, there are some standards and conventions that are usually
followed in the construction of the region.

First and foremost: the ordering algorithm should be decided and defined prior to
look at the experimental data. Otherwise one could artificially exclude the result of
the experiment as long as the excluded are is less than 1-CL. Also, usually one

wants a connected region

p(x|mo)

Known observed value L)



Probability ordering

In the past, many tried to get the shortest possible interval, so that the resulting
confidence intervals were likely to be more narrow (i.e., measurement more precise).
(“probability ordering” or “Crow-Gardner ordering”)

. Choose one value for m, mo, and look at p(x|mo)

. rank the x values in decreasing order of probability

. start accumulating from the x with highest probability
p(x|mg) . . .
A . accumulate the other x values until the desired CL is
reached.
f N . the result is the shortest possible region for m=mg
/ \ . Repeat for all m

>
£Zr

Unfortunately, such criterion is flawed, because the probability depends on the metric
used for the observable X, so the shortest interval in one metric isn’t shortest Iin

others (think of looking at x or at X’ = In Xx) 62



Issues

An number of inconsistencies were identified in Neyman constructions based on
simplistic ordering criteria. Probably the worse were empty confidence regions

Central 90% CL band for a , Central 90% CL band for a
Gaussian of unit width rerprrerbprered Poisson with unknown mean
C : and background b=0.3 3
> 1 1 !
= ll " _II_
4 e e o =.10 i 1 i
= F S 9 e . ma
= F i i é’ 8 J el
<3 .
0" R = 7 .
= I 5 6 -
2 2 - =
- 4 4 et e sy L S . B
- 3 | - -
I T 2 |a "R
A 4 f 1 W
O -~ 1 l 1111 1 1 0Ll 11 1 11 I 0
- i » 012345678 9101112131415
2 | 0 | 2 3 4
Measured n

Measured Mean x

What if | observe x = -1.87 or n = 0?7 Resulting confidence regions are empty....
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Likelihood-ratio ordering (Feldman and Cousins)

In the late 90ies, a better criterion was proposed. ldea
parallels probability ordering, but rather than using the

probability as ordering metric, the likelihood ratio is used. \ Ny '
A Gary . eldman -(1 942—)' .

Choose a value mO of the Robert D. Cousins

parameter and for each x p(:l? m)

calculate 4

p(x|mo)
p(x|m)

Criterion does not
depend only on p(x|m)
at fixed m but also from
p(x|m) at other m values

LR =




Likelihood-ratio ordering

. Choose one value for m, mp and generate simulated samples of pseudodata accordingly.

. For each observation x calculate (i) the value of the likelihood at mo, p(x|mo)=L(mo) and (ii) the
maximum value of the likelihood L(m) maximized over the space of m values.

. Rank all x in decreasing order of likelihood ratio LR=Lx(mq)/Lx(m).

. Start from the x with higher LR and accumulate the others until the desired CL is reached.

. Repeat for all m

LR-ordering preserves the metric, mostly avoids empty confidence regions and
has several other attractive features. It is the most widely used ordering in HEP.

It is not immune from founded criticism and may lead to paradoxes in specific
problems, but if you ever will need to quote a confidence region in your analysis it
IS a good idea to take LR-ordering as default option unless there are strong

motivations against it.
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Likelihood-ratio ordering practice

Let’s try to reproduce LR-bands. Use the original paper as a reference
http://arxiv.org/pdf/physics/9711021v2.pdf and try to reproduce the confidence
band in Fig 7. Useful and interesting information to understand the LR-ordering is
also in http://users.physics.harvard.edu/~feldman/Journeys.pdf

TABLES

TABLE I. Tlustrative calculations in the confidence belt construction for signal mean p in the
presence of known mean background b = 3.0. Here we find the acceptance interval for g = 0.5.

n P(n|p) Hbest P(n|ppest ) R rank U.L central
0 0.030 0. 0.050 0.607 6

1 0.106 0. 0.149 0.708 5 v Vv
p 0.185 0. 0.224 0.826 3 Vv Vv
3 0.216 0. 0.224 0.963 2 V4 Vv
1 0.189 1. 0.195 0.966 1 4 Vv
5 0.132 2. 0.175 0.753 4 v Vv
6 0.077 3. 0.161 0.480 7 v Vv
7 0.039 4. 0.149 0.259 v Vv
8 0.017 5. 0.140 0.121 Vv

9 0.007 6. 0.132 0.050 v
10 0.002 7. 0.125 0.018 v
11 0.001 8. 0.119 0.006 v



http://arxiv.org/pdf/physics/9711021v2.pdf
http://users.physics.harvard.edu/~feldman/Journeys.pdf

Indifferent distribution

Suppose that p(x|m) = f(x), which is nearly
independent on m. Here, for € arbitrarily small,
observing x says very little about m. X1 1095+¢€]|0.95-¢

X2 0.05-¢(0.05 + ¢

mi m2

Any confidence region construction should not provide information about m.

"-.' L R-ordering unambiguously would
choose this one instead

{ Intuitively one would choose the  }
band that covers the whole space §

mi m2

0.95+¢]0.95-¢| |
0.05 - £0.05 + &

LR here achieves something nearly magical: conclude something out of a nearly
uncorrelated information. 57



—mpty intervals with Likelihood-ratio ordering

There is more than that.

LR-ordering has ben proposed by Feldman and Cousins as guaranteed not to
yield empty intervals.

This holds in many practical applications but is not mathematically true by
construction.

http://arxiv.org/pdf/hep-ex/9912048v3.pdf
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Confidence interval formalism

The goal is to find the range m.(x) < m < m,(x) that contains the true value m with
probability (3 (typically one chooses [3 large, like 68% or 90% or 95%)

Given observation x from a pdf p(x|m), the probability content B of the region
[a,b] in X space is

b
B=pla<z<b) = / p(x|m)dx

a

If the pdf and true value m are known one can get 3 given a and b. But when the
true value of the parameter m is unknown, one has to find another random

variable z(x,m) such that its pdf is independent of the unknown value of m. If this
can be found, then one can re-express the above equation into

p(m—(z) <m <my(z)) =

A method that yields such an interval possesses the property of coverage. 59



Coverage

Coverage is a property of the procedure, not of the single measurement.

....rght, right, wrong,
right, right, right, right, right
wrong, right, right, right, right,
right, right, right, right, right,
right, right ....

187 B e

[[emmin, mmax] |
[F[e”min, e”max]: \/‘57(\
[Bmin. |9 10" min. 8" max]

[e*min, e*max]




Inferring from data

Choice of the model
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Inference

Given some data, to do inference | need to

1. ldentify all the known observations Xx;

2. ldentify all the unknown parameters m;

3. Construct a probability model for both
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Model building

In all inferences we use probability models for the observables x and the unknown
parameters m.

With model | mean the full structure p ( data | parameters) = p(x|m)

- holding parameters fixed, gives us the probability density function of data, which
provides the ability to generate pseudo-data via Monte Carlo.

- holding data fixed gives a likelihood function for parameters

p(x|m) is often (always?) given as granted, but it usually entails major assumptions,
where our physics knowledge, understanding, and intuition enter strongly.

Model building is necessary both in Frequentist and Bayesian procedures: this is

the part everyone agrees on. Improving the model is the most efficient way of

improving your inference -3



Model building

The model p(x|m) is somehow a quantitative summary of the analysis.

If you had to explain or justify your analysis choices, you would tell a story about

how and why you get to know what you know, based on previous results, auxiliary
studies and so on.

The quality of the result is largely tied to how convincing and realistic this story is.
In HEP there are three main thrusts of motivation/justification for a model.

» Monte Carlo simulation of fundamental physics processes and their detection
- Data-driven model building

- Effective modelling

A real-life data analysis at LHC or elsewhere typically uses a mixture of the three.”



Monte Carlo-based modeling

HEP enjoys the “standard model”: a quantum field theory of the elementary
particles and their fundamental interactions. Encapsulates dynamics in a relatively
simple Lagrangian density with 18 free parameters.

1.Phase space is sampled with
Monte Carlo techniques. 2.The
dynamics is simulated based on the
Lagrangian. 3. Perturbation theory is
used to systematically approximate
the theory. 4. Interactions of
particles in the detectors are
simulated. 5. the results are subject
to the same reconstruction
algorithms as in experimental data

We can look at distributions of any
observables we can measure in data

1

1 v 1 a v
Loy = TWo - W — 2B, B* — G2, Gl

1

A S

kinetic energies and self-interactions of the gauge bosons

] 1 1 i 1
+ Ly"(id, — 597 W, — 5g'YB,)L + Ry"(i0, — 59Y B,)R

v
kinetic energies and electroweak interactions of fermions

1, 1 1,
+ 5 1@ — 597 - W, — 29 YB) 6| — V(9)
W= Z ~,and nggs‘;lassa and couplings
+ g"(qvT.q) G + (G\LéR+ G:Ro.L+ h.c.)

“

interactions between quarks and gluons fermion masses and couplings to Higgs
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Data-driven modeling

Simulation may not be trustable to the desired precision for all processes. For those
processes, typically backgrounds, for which simulation isn’t realistic enough, try
data-driven modeling.

Use subsets of events in data known to be dominated by the process of interest and
to model its distributions. Use simulation to determine the coefficients needed to
extrapolate from the control region to the signal region. Coefficient may have
experimental and theoretical uncertainties.

lllllllllll!lllllllll

LR lllllll llllll
10 CMS Prellm'lnary
— S|gﬂﬁl, m"=160 GeY
[ WJets, tW
[ di-boson
N
I Drell-Yan

e*e” Channel

“ABCD” method

y
=)

3,

events / bin

2

.
o
_- N W s’ N ® W

QO

1 2 3 4 4 6 7 8 9 10 76
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—ffective (or empiric) modeling

When everything else fails because the processes are too complex to be reliably

simulated and control regions in data are not available to determine their features,

one resorts to empiric modeling.

Look at data distribution and try to guess shapes, featu
P

E.g., model the “"combinatorial
background” on the right with a
square-root-like function that
appears to adapt fairly well to the
observed shape

10

res etc...

L LHCb

2.01

! |
* WS data

— Fit
B Background

2.015 2.0
M (D'r?) [GeV/c?]
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Why*?

Why is this relevant to our topic?

Because the discussion of modeling allows us to introduce a new, and crucial,

discussion, related to uncertainties that are not statistical, but systematic.
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Funny things happen If you've got your model wrong

The number of droplets produced by a charged particle in a
cloud chamber is proportional to charge Q. A Q=1 particle have
a Poisson distribution of droplets with p = 229 (known by
counting droplets from known particles over the known length).

In 1969, out of a sample of 55000 particles, McCusker and
Cairns observed a particle with only 110 droplets. As p(j<110| p
= 229) = 10'® << 1/55000, they claimed evidence for free
quarks (fractional charge).

Shortly after Adair and Kasha pointed out that in each
elementary scattering 4 droplets are produced in average.
Therefore, assuming that always 4 droplets get produced, a
much reasonable rate of occurrence would be expected from
ordinary Q=1 particles

28 _
o—229/4

p(j < 110/4 ~ 28) ~ » (229/4)/ e 10 9

g=1
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In a study of alr-shower cores using a delayed-expansion cloud chamber, we have ob-
served a track for which the only explanation we can see is that it is produced by a frac-
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Inferring from data

Systematic uncertainties

81



What is systematics®?

Hard to find any precise, rigorous definition. In
experimental physics one assesses systematic
uncertainties all the time, but when it comes to define them
only semi-empiric definitions exist, based on examples.

Any statistical inference is based on p(x|m): observe x to extract information
about m, assuming to know the distribution p(x|m), that is “the model”.

The systematic uncertainty is that component of the uncertainty that is due to
the imperfect knowledge about the shape of the probability distribution p(x;m).

G. Punzi, 2001
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Nuisance parameters

Assume model p(x|m). But the actual model realized may differ. The difference is
parametrized by the additional dependence on some unknown nuisance parameters
that are not interesting for the measurement at hand but do influence its outcome.

Assumed model Actual model

p(z|m) = p(Z|m, 5)

[ Nuisance

“Interesting”
arameters
Data parameters P

The width of p(x|m) connects with the statistical uncertainty. The shape, which
depends on nuisance parameters s, with the systematic uncertainty.

Not only we don't know exactly what value of x would be observed if m had some
definite value; we don’t even know exactly how probable each possible value of x is.
Cannot define standard deviation for s; would imply knowing the distribution p(s). But
then s wouldn’t be any longer a nuisance and would get embedded in the model! Can
only estimate an allowed range for s, and ensure that any result of the inference hold
for any s in that range. >



Sayesian approach

For Bayesians, s is just another parameter. Assume an a priori distribution for s that

allows “integrating it out” through marginalization and use the result p(x|m) as
model for any subsequent (Bayesian) inference.

pl@ ) = [ ol p(3)ds
- A significant dependence of results on the chosen prior p(s) may occur

 Results from multiple measurements based on independent data but sharing
nuisance parameters may get correlated (through common priors)

Typically good avoiding mixing frequentist and Bayesian approaches. E.g., don’t use
marginalized p(x;m) to get Neyman confidence intervals. Hybrid results are hard to
interpret. If you assume the distribution of parameter s known, you enter the Bayesian

realm, hence should rather assume known the distributions of all parameters.
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Frequentist approach — interval estimates

The goal remains to devise a procedure that guarantees coverage whatever is the
value of the unknown nuisance parameters.

Because the allowed and plausible range of the possible true values of the nuisance
parameters might be large, the coverage requirement may result into overcoverage
for some values of s.

Finding the optimal procedure to obtain rigorous frequentist confidence intervals in

the presence of nuisance parameters is the object of current active research in the

statisticians/physicist community (see papers by, e.g., Rolke, Lopez and Conrad, K.
Cranmer)

Consensus not yet reached on what is best. However, at the LHC the generalization
of the LR ordering using profiled likelihoods gains popularity. This is the only method
we’ll discuss here.
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Why not just multidimensional LR-ordering®?

Can one generalize the construction based on likelihood-
ratio ordering to multidimensional likelihoods, L(m, S) ? l.e.,
construct a multidimensional confidence belt whose

intersection with observed value X is “projected” onto the
subspace of interesting parameters m to get the interval?

One can. But has to deal with two serious issues.

« Due to geometry, projections of higher dimensional structures into lower-
dimensional subspaces lead to information loss. Structures in the multidimensional
space overlap and get “shadowed”, leading to broader (i.e. lower-precision)
intervals that may extend over the whole domain of m, making the inference non
informative.

- A LR-based construction implies generation and fit of pseudodata that achieve an
adequate sampling of the space of parameters. If such space is multidimensional,
the needed computing power quickly diverges, 86



Profile-likelinood ratio ordering

An attractive and promising approach is to perform ratio-ordering on the likelihood
profiled with respect to its nuisance parameters. This is called a profile-likelihood,

Not a likelihood, but a lower-dimensional derivation of it: the likelihood is a
multidimensional function of the physics and nuisance parameters; the profile

likelihood is a function of the physics parameters only obtained by maximizing the
likelihood wrt to the nuisance parameters.

Variable Meaning

m Parameters of interest (”physics parameters”)
S Nuisance parameters

m, 3 Parameters that maximize L(x|m, s)

§* Parameter that maximizes L(x|m = my, s)

PLR — L(x|m=mg,8")

L(x|m,§) o7



Profile-likelinood ratio ordering

Algorithm is similar to that of the LR ordering.

. Choose one value mg for m and one value so for s, and generate pseudodata accordingly

. For each observation x (i) maximize p(x|m=mo,s)=L(m=mo s) with respect to s to get
Lx(m=mo §*) and (ii) maximize the likelihood L(m,s) over the space of m and s to obtain Lx(m,$)

. Rank all x in decreasing order of profile likelihood ratio PLR=Lx(m=mo §*)/Lx(m,S)
. Start from the x with higher PLR and accumulate the others until the desired CL is reached.

. Repeat for all values of m

. Repeat for values of s sampled in a plausible range

Need to fit each sample twice, one with all parameters (physics and nuisance) floating
and another one with physics parameters fixed to their test value mo.

It has been shown that the PLR is independent of the true values of the nuisance

parameters s and, asymptotically, its distribution too gets independent of them.
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When solving a given problem, try to avoid solving a more general
problem as an intermediate step.

V.I. Vapnik

Inferring from data

Asymptotic properties of (profile) likelihood ratios
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LR- and PLR-ordering a CPU nightmare

Neyman constructions using (P)LR-ordering imply generation and fit of large
numbers of simulated experiments. These are necessary to determine the (P)LR
distributions needed to build the confidence belt, for a set of true values of
physics and nuisance parameters of the likelihood that adequately sample its n-
dimensional space.

Given a target sampling density d, needed computing power grows like d"and
becomes soon unmanageable (I once dealt with a 27-dimensional case, and that
was a nightmare, http://arxiv.org/pdf/0810.3229v2.pdf)

Can we use good-enough approximations of the (P)LR distributions for every
value of the likelihood parameters, and that are based only on the observed
likelihood function?

90


http://arxiv.org/pdf/0810.3229v2.pdf

Wilks' theorem

Asymptotically (i.e. for large N), the distribution of likelihood ratio

—2InLR(mg) = —21In p(x‘ﬂfo)
p(x|m)

approaches a 2 distribution with a number of degrees of
freedom corresponding to the dimensionality of m.

Samuel S. Wilks (1906-1964)
This holds independently of the shape of p(x|m) and on the value of m.

Facilitates enormously usage of likelihood- and profile-likelihood-ratio as ordering
quantities in the construction of intervals. If the likelihood is regular enough to be in
asymptotic regime, one can avoid massive production of simulated experiments.

One can use few samples of pseudodata to check if the likelihood is already
asymptotic. If it is, then trust Wilks' theorem; if not, only pseudodata allow
determining the needed distributions o



Wilks' theorem at work

Remember the graphical construction for the 3
L] L] n L] o’
variance of a one-dimensional ML estimator?  ©

-53 --.-..--.-..---E...---...-n... E amsamsn

Wilks' theorem tells us we can use this in any
number n of likelihood dimensions to find
approximate central acceptance regions in
Neyman constructions that use (P)LR-ordering

-53. 5 mssmsamenme --.-'- smssmsssnnens u.gu smssmssmssmssmsnme i

pP\L|mg 54
—2InLR(mgy) = —21n (@ - ) = A . .
p(x|m) T
CL A
A "m=1 n=2 n=3 n=4 n=5 CL =T =2 n=3 n=4 n=>5
1.0 | {0.683 0.393) 0.199 0.090 0.037 0.683 | 1.00 2.30 3.53 4.72 .89
2.0 | 0.843, 0.632 0428 0.264 0.151 0.90 2.71 4.61 r 7.78 9.24
4.0 | 0.954 \ 0.865 0.739 0.594 0.451 0.95 | 3.84 2.99 9.49 11.1
9.0 | 0.997 \0.989 0971 0.939 0.891 0.99 | 6.63 9.2 13.3 15.1
! /[

projection onto the space of parameters of a 1(2)-dimensional projection onto the space of parameters of a 3-dimensional

likelihood at the point where -2InLR varies by 1.0 units likelihood at the point where -2InLR varies by 6.25 units

identifies a 1(2)-dimensional 68(39)% CL central interval identifies a 3-dimensional 90%CL central interval




Wilks' theorem at work (F. James)
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(orofile) likelihood-ratio as a test statistic

nterest in the NP lemma is not only theoretical. In many cases where testing an
nypothesis is needed, one uses the (profile) likelihood ratio as a test statistic. It’s
known (x?) asymptotic distribution allow testing with no need to laboriously construct
_R distributions by generating and fitting pseudodata.

fit under H1

. ——

fit under HO RRRE -

R ————

1. Fit data under HO: i.e. with a likelihood

” 5 VBF H(120)-» -m-f 212
that only has “background” parameters. | 3 (120

Ns=14Tev, 30151

VBF H(120)-stt—lh
Js=14 Tev, 3015

. Fit data under H1: i.e. with a likelihood “8
that includes n additional “signal” free
parameters

. The ratio between the resulting values of 'J~-"" s -'!"

the likelihood functions at their maxima MGy Mo (Gev)
is distributed as a x? with n degrees of X2 o
freedom.

g

LR observed in data

04l

. Comparison of the ratio obtained in
data with the relevant x? distribution
allows for testing H1 vs HO.
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Inferring from data

Biased MLE bias from incomplete pdf (known at
the LHC as “Punzi effect’)
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A simple fit of sample composition

® Measure a variable x.

® T[wo classes of
events,A and B

® For each class, x is
distributed Gaussian

¢ Whatis f, the

2

fracion of A-type  pz14) = g(2:0,0) = ! e._%o?)_
events? (z14) 9(2;0,0) V2O

1 _ (z=1)%

® Likelihood fit... P(x|B) = g(x;1,0) = e~ 202
V2o

c(f)= II {f9(@i0,0)+ 1~ f) g(ais1,0)}

i=1all evts o6



Results

® A few hundred toy Fit results for {
experiments, |50 events
each, generated with 1
f=1/3. Input [ = —

80

® Result: 60|

® Meanf=0.337 £ 0.004 *9

20t

® (0 =0.083

o Al gOOd. [arXiv-physics/0401045]



Improving the fit with event-by-event resolution

prev.. L(f)= ]| {f9(@s0,0)+ (1~ f) g(zi:1,0)}

i=all evts

now: L(f)= H 1f9(x;0,0:) + (1= f) g(xs; 1,04) }
i=all evts T T

Use more information - expect better result
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Results 777?77

c(f)= [I {f 9(xi:0.00) + 1~ f) g(zi:1, U‘t)}

i=all evts

® |nput:f=1/3.

® Result:
® Mean f=0.514 + 0.007
e 0=0.14

® What’s gone so badly
wrong?
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® The expression [ g(x;:0,0;)+ (1 —f) glxi;1,04) is
not the probability to find z;, P(x;). It is the probability to

find x; giveno;, P(x;|o;).
® But P(z)# P(z|y)



Correcting the pdf

® And hence the correct likelihood

L(f)= H {fP(x;|l0;,A)-P(o;|A) + (1 — f)P(x;|04, B)-P(0;|B)}

Wrong Likelihood Correct Likelihood

Mean=0.514 + 0.007
0=0.14
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MLE biases

The pdf should explicitly include the distribution of any observable that enters the
event-by-event.

If you don’t include explicitly, the fit will do it for you implicitly, assuming that such
distribution is the same for all classes of events in your sample.

If that’s not the case, your fit results might get strongly biased.
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