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The LHC
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An accelerator that collides, 40 million times per second, protons against protons at 
center-of-momentum energies of 7 to13 TeV.  


Collisions are analyzed by 8000 scientists from 4 large collaborations to explore the 
fundamental structure of matter and its interactions.


Primary goal: settle conclusively the mechanism of spontaneous breaking of the 
electroweak symmetry that generates the masses of elementary particles.



3

Done
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Not just Higgs

Hadron colliders at the energy frontier are 
machines with a broad discovery potential. 


Most LHC physicists search for signs of the 
existence of new particles or interactions.


With some luck, the effort could result in 
discoveries. Otherwise, one reaches an improved 
understanding of known phenomena, useful to 
inform/guide future scientific decisions.


LHC experiments produce O(1000) physics 
measurements each year.    
A proper statistical treatment of data is a key aspect of many of these 
measurements: minimize the risk of drawing wrong conclusions and maximize the 
amount and quality of extracted information.



The chief LHC statistical challenge 
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Background only?

Huge number of collisions, reconstructed with complex infrastructures.  


However, at the end of the day lots of analyses boil down to studying whether a data 
distribution shows compatibility with what is expected from known processes only 
(“background”) or if it indicates presence of new phenomena as well (“signal”).
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Or is there signal as well?

The challenge: how compatible data are with expectations from background? Is 
there a signal lurking? If so, what would be the statistical significance? And what is 
the most powerful way of telling the background apart from the signal+background ?



Today
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• p-values, look-elsewhere-effect, 5-sigma and all that


• Role of modeling 


• Systematic uncertainties


• Confidence regions with nuisance parameters.


• Punzi-effect and other miscellanea

In god we trust, all others bring data 

 W. E. Deming



9

What does the “Brazil plot” mean?
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What is the p-value plot? What is the local p-value? 
What is the look-elsewhere-effect?
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What is CLs?



Caveats
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I am not a professional statistician nor did I give any original contribution to 
statistics. Just an enthusiastic practitioner,  self-educated through 10+ years of 
data analysis in collider experiments.


Please interrupt me to ask questions, will help keeping all of us awake. Also, feel 
free to follow-up at diego.tonelli@cern.ch


Slides will be available shortly at www.pi.infn.it/~dtonelli/StatLHC


mailto:diego.tonelli@cern.ch
http://www.pi.infn.it/~dtonelli/StatLHC


Notation

13

Probably my notation won’t match the one you are used from Prof. Milotti’s course. 
Apologies: I know this might be confusing, did not have the time to uniformize.


Will try to stick to minimal amount of notation. You should be able to follow most of 
today’s talk by keeping in mind that I usually use 


• x are observed data (e.g., diphoton invariant mass) or any function of them (e.g., 
likelihood ratio). It’s irrelevant whether x is one- or multi-dimensional.


• m are physics parameter to be measured (e.g., Higgs mass). Irrelevant whether m 
is one- or multidimensional


• p(x|m) is the probability density function for x given m. 



Testing hypotheses 

P-values, look-elsewhere effect, and all that
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Significant deviation?

Experimentalists often need to judge if an apparent anomaly in the observed data 
constitutes a significant departure from the expectations of known phenomena or if 
it’s likely to arise from statistical fluctuations of known phenomena.


The first thing you do if you suspect you may have a discovery.


At LHC (and in particle physics at large) this is mostly addressed using “p-values”  


A p-value is a random variable that provides a quantitative evaluation of the 
probabilities to be observing a genuine anomaly or a fluke. 


(Check this out for a funny piece about origin of p-values                                      
http://priceonomics.com/the-guinness-brewer-who-revolutionized-statistics/ )

http://priceonomics.com/the-guinness-brewer-who-revolutionized-statistics/
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Testing “signal+background” vs ”background”
Need two hypotheses. Null hypothesis: only known phenomena contribute 
(“background”). Signal hypothesis: new phenomena (“signal”) contribute as well.


Devise a function x of the data (e.g., signal event count), whose pdf under the null 
hypothesis p(x|m0) “differs” from the pdf under the signal hypothesis p(x|m1). 


Predict distributions of x under the two hypotheses (typically done using simulation)


Decide and fix prior to observation the false-positive rate: how far the observed value 
of x should be from the core of p(x|m0) to exclude the null (i.e., favor signal.) 

Arbitrary function x of the data that allows separating between the two hypotheses

Di
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p-values
Make the observation. The “relative location” of the observation x with respect to the 
two shapes offers a quantitative measure of the probability that one is observing a 
fluctuation or a new phenomenon.  


p-value is the relative fraction of the integral of the null model over values of x as 
signal-like as that observed and more. The smaller the p-value, the stronger the 
evidence against the null hypothesis. If p-value < false-positive rate, the null is 
excluded at a confidence level CL = 1-(p-value).

Arbitrary function x of the data that allows for separation between the two hypotheses
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Model testing the Popperian way
Cannot prove that an hypothesis is true, only that it’s false.


“Discover” a signal by excluding its absence to an high-level of 
significance (that is by excluding that only background contributes). 


Set limits to the existence of a signal by excluding to an high level of 
significance is presence.


Karl Popper 
(1902-1994)

p-value is not a probability! 


It is a random variable (function of the data) that is distributed uniformly if the 
tested hypothesis is true.


It does not express the probability that an hypothesis is true or false! It relates to 
the probability that, if an hypothesis were true, one would observe x or a more 
extreme value. 
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In one slide

This is x, whatever 
function of data whose 
distribution is sensitive 
to separate H0 from H1

x

This is p(x|m0), the distribution of x under the 
null hypothesis

This is p(x|m1), the distribution of x under the 
signal hypothesis

Symbol Meaning

↵ Rate of false positives (Type I error: reject H0, while it was true)

� Rate of false negatives (Type II error: reject H1, while it was true)

1� � Power of the test
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Folklore
Physicists’ lingo goes like “at how many sigma such and such result is significant” 
We have less feel for p-values.


The “number of sigma” (or z-value) is just a translation of p-values using the 
integral of one tail of a Gaussian. It expresses by how many sigma from the mean 
my observation would be if the test statistic x would be distributed as Gaussian
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Examples: p-values in coin tossing 

Check if a coin is fair. The probability to observe j heads in n trials is binomial


Null hypothesis: the coin is fair (p=0.5). Get 17 heads out of 20 trials. Regions of 
data space with equal or lesser compatibility with null, relative to j=17 include 
n=17, 18, 19, 20, 0, 1, 2, 3.


P(n=0,1,2,3,17,18,19,or 20) = 0.26% Hence, if the null were true (coin is fair) and 
we would repeat the experiment many times, only 0.26% of the times we would 
obtain a result as extreme or more than that observed. 


f(j;n, p) =

✓
n

j

◆
pj(1� p)n�j =

n!

(n� j)!j!
pj(1� p)n�j
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p-values in mass peak
Suppose you measure a value x for each 
event and bin the resulting distribution.


The count in each bin is a Poisson 
random variable, whose mean in the H0 
hypothesis is given by the dashed line


Observe a peak of 11 events in the 
central bins, with expected background 
3.2 events.

P-value for the background-only hypothesis is P(n>=11, b=3.2, s=0) = 5*10-4


Is this evaluation fair or biased?
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“Look elsewhere” effect 

It does not account for the chances that an 
excess could have arisen in any pair of adjacent 
bins. With 20 bins (10 pairs of adjacent bins) the 
p-value gets multiplied by ≈10.

Lots of bins, lots of chances at fluctuations. 


Need to correct for the effect of multiple testing (i.e., need to account that we are 
also “looking elsewhere” from where we see an anomaly).


When quoting p-values, need to account for the size of the test space. The larger 
the size, the higher the probabilities to observe rare fluctuations. Otherwise 
significances may be grossly overestimated. 

Peak could have been 
observed here

..or here



Short aside (not LHC stuff) 

The discovery of the Ooops-Leon particle
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Leon
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Leon Lederman is a living legend. In the HEP 
golden age of the ’60-’70 he did many of the 
key experiments that laid the foundations of 
the Standard Model. In 1988, he got the 
Nobel prize in physics for the discovery of the 
muon neutrino.

In 1976, his group 
announced the 
observation of a new 
particle produced by a 
beam of protons on 
Beryllium and decaying 
into e+ e- pairs, with a 
mass of about 6 GeV. 



The “Oops-Leon” particle
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This was published and provided a very strong 
candidate for the Upsilon, the bound state of a 
(then still unobserved) fifth quark.


More data did not confirm the finding.


[Embarrassment…]


The erroneous first claim has been later tracked 
down to a mistake in the statistical evaluation of 
the significance of the signal, which did not 
properly accounted for the LEE. 

Invariant ee mass



PS

27

A couple of years later, the same group 
found the real Upsilon meson, at 9.5 
GeV using muon pairs and nobody 
cared too much about the 6 GeV fluke, 
which someone dubbed “Oops-Leon” in 
a pun over Lederman’s name.
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How to deal with the effect of multiple testing
There are various semi-empiric recipes to determine an LEE-correction starting from 
a “local” p-value: width/resolution, Bonferroni, Dunn-Sidak, Gross-Vitells, 


Most of these are only useful to provide a semiquantitative feel of the severity of the 
effect in simple cases. Cannot be applied to more complex analyses, where the final 
p-value is the result of a combination of analyses in various channels, each 
contributing different weight and with different experimental resolutions.


Ideal solution: a p-value of p-values, that is use the p-values as test statistics an 
look at the distribution of smallest p-values. Next to impossible (I don’t think has 
ever been used in a realistic HEP analysis).

Note: interesting tradeoff between making your search as much broad as possible 
(thus increasing the chances to find something) but not so borad that the LEE 
spoils all sensitivity. Can an optimization be explored?
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Where is “elsewhere”?
Also, it does not account for the possibility that 
tenths, or hundreds, or thousands of 
distributions may have been inspected, in the 
same analysis or in other analyses.


Should we correct for these as well? 


How large is the testing space to base our 
correction on?   


Guidance (consensus at the Banff 2010 Statistics Workshop):  limit the 
testing space to models (i.e, plots) that are inspected within a single 
published analysis

Should we go back and correct previously published p-values when new 
analyses are completed?
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The conventional “5σ rationale”
Forgetting about the LEE is hardly the only mistake one can do.


“Tuning” of the data selection to artificially enhance signal-like statistical fluctuations 
is a serious threat if the selection isn’t frozen before looking at the signal regions


Forgetting to include systematic uncertainties in p-value determinations could lead to 
false positives. Null should be rejected if the p-value is sufficiently small for all 
allowed values of nuisance parameters. 


HEP folks conventionally agreed to deal collectively with these possible pitfalls by 
setting a rather high standard for p-values to justify claims of new effects. One 
requires the null to be rejected with significance of 3.5σ (for “evidence”) and 5σ 
(“observation”), corresponding to very small p-values (fluctuations that occur 3 times 
every 10 million trials). (See http://www.huffingtonpost.com/victor-stenger/higgs-and-
significiance_b_1649808.html for an historical recollection)


Loose rationale: such high thresholds should protect from the effects above.

http://www.huffingtonpost.com/victor-stenger/higgs-and-significiance_b_1649808.html
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Still….

Split resonance, CBS and MMS 
collaborations, CERN mid-60ies          

http://arxiv.org/pdf/hep-ph/

ALEPH collaboration, 
CERN mid 90ies.




Which function of the observables x to choose?
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Back to p-values. Arbitrariness in choosing the 
test quantity x. Need to find a function of the 
observables x that maximizes the power of my 
tests at fixed false-positive rate. Pretty obvious 
in simple counting experiments


Less obvious in multiple-dimensional nonlinear 
problems



Neyman-Pearson Lemma
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It can be demonstrated that such variable exist and it 
is the likelihood ratio (again!)


The region W of acceptance of the null which 
minimises the probability to accept the null when the 
signal hypothesis holds is a contour of the likelihood 
ratio


Any region that has the same false-positive rate would 
have higher rate of false negatives (technically, less 
power)

Jerzy Neyman 
(1894-1981)

Egon S. Pearson 
(1885-1980)

p(x|H1

p(x|H0)
> k↵



NP-lemma illustrated proof 
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Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Take a contour of the likelihood ratio that has a given rate α of false positives, that is 
a given probability under H0

Region Wc: if data fall there we 
reject H0; probability under H0 
is α



NP-lemma illustration 
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Take a variation that has the same rate α of false positives (same probability under 
H0)

Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Region Wc: if data fall there we 
reject H0; probability under H0 
is α



NP-lemma illustration 
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Take a variation that has the same rate α of false positives (same probability under 
H0)

Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Region Wc: if data fall there we 
reject H0; probability under H0 
is α



NP-lemma illustration 
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Because the region gained with the new contour was outside of the likelihood ratio 
contour and the region lost lost was inside it, the hierarchy between probabilities 
under H0 and H1 in the two regions is inverted.
Region W: if data fall here we accept 
H0; probability under H0 is 1-α

Region Wc: if data fall there we 
reject H0; probability under H0 
is α



Likelihood ratio
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In most of the limits and measurements made at the LHC, the test statistic of 
choice is the likelihood ratio, that is the ratio between the likelihood of the data 
under the null hypothesis and the likelihood of the data under the signal 
hypothesis.




Issues with p-values
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Possible to get an observation 
that rejects both the null and the 
signal hypotheses

Can make no statement about the 
signal regardless of the outcome



Sensitivity
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In searches for small signals with poor 
signal-to-background separation, the 
analysis has hard times in telling apart 
the possible presence of signal from 
the fluctuations of the background.


Analysis sensitivity is poor, impling that 
the distributions of the test statistics 
are similar for the hypotheses of signal
+background and background only. 



The problem of spurious exclusion
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p(x|s+b)

p(x|b)

Observed x
x

Use the likelihood ratio x 


Test the hypothesis of the presence of a 
signal (s+b).


Typically, if p-value of the hypothesis s+b 
is smaller than 5%, signal gets excluded 
with 95% CL.


p-value of s+b

signal-like bckg-like



Spurious exclusion
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p(x|s+b)

p(x|b)

Observed x
x

p-value of s+b

signal-like bckg-like

1-(p-value of b)

Use the likelihood ratio x 


Test the hypothesis of the presence of a 
signal (s+b).


Typically, if p-value of the hypothesis s+b 
is smaller than 5%, signal gets excluded 
with 95% CL.


However, when the distributions of the 
test statistic are similar, 1-pvalue of the 
background hypothesis  is just marginally 
higher than p-value of s+b.



CLs
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signal-like bckg-like
Modified p-value with no rigorous statistical 
foundations. “Works” fairly well allows for 
treating simultaneously exclusion and 
discovery and prevents from excluding 
hypotheses to which there is no sensitivity.


Base test on the pvalue for the s+b hypothesis 
scaled by (1-pvalue of b). Exclude only if 


CLs = [pvalue for s+b] / [1 - pvalue of b]


is small. Denominator increases CLs if pvalue 
thus preventing excluding signal to which 
there is no sensitivity.

p(x|s+b)
p(x|b)

p-value of s+bp-value of b

Inspired by similar methods (Zech, Roe&Woodroofe) developed for counting 
experiments.



A Poisson example
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Gauging the sensitivity of an analysis
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Asimov approximations for median sensitivities
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Blind analyses
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So, now you should be able to understand this

48



Neyman construction 
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J. Neyman came up with a mathematically rigorous and very 
elegant procedure that allows constructing confidence intervals 
with the desired level of coverage


Jerzy Neyman (1894-1981)



Neyman construction illustrated
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For each possible true value of parameter m, consider p(x|m). Its shape can vary 
as a function of m.

m0

m1

m2

p(x|m)

m



Neyman illustrated I
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Take a specific value m0 of the parameter 

p(x|m0)



Neyman illustrated II
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p(x|m0)

Define, using the p(x|m0) associated to that parameter, an acceptance range in x, 
such that p(x ∈ range | m0) = 68%.

68%



Neyman illustrated III
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p(x|m0)

Note that such region is not unique. I could also have chosen to put an upper limit 
at 68% CL…

68% 32%



Neyman illustrated VI
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p(x|m0)

68%

32% / 2

…or a central limit. 


The criterion of choice of the region is chosen is the ordering rule (because it’s the 
algorithm one uses to order the probability until an amount corresponding to the 
chosen confidence level (68%, in our example) is reached. 



Neyman illustrated V
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p(x|m)

m

m0

m1

m2

Derive the acceptance region for every possible true value of the parameter m



Neyman illustrated VI
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This defines a confidence belt for m.

m

m2

m1

m0

p(x|m)



Neyman illustrated VII
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m

m0

m�

m+

Then you do your analysis on data, and observe a value x0. The observed value 
intersects the confidence belt. The union of all values of m for which acceptance 
ranges are intersected by the measurement defines the confidence interval [m₋(x) 
m₊(x)] at the 68% CL for the parameter. Note that the extremes of the interval are 
random variables (functions of data x)

In repeated experiments, the confidence intervals will have different boundaries, but 
68% of them will contain the (unknown) true value of the parameter m



Why does it work?
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Make a measurement x0 and determine the corresponding confidence interval, For 
every true value m of the parameter, say m2, included in the interval, 68% of the 
measurements would be in the acceptance region. Each of the measurements will 
lead to a confidence interval that contains m2 . Hence, the interval contains the true 
value with 68% probability, m ∈ [m₋, m₊] at the 68% CL.

x

m2

m�

m+

x0



Simple numerical example
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Bags of various classes: each class contains a different fraction of white balls 
(1%, 5%, 50%, 95%, and 99%). Extract N=5 balls from each bag. Would like 
to infer to which class each bag belongs 

1% 5% 50% 95% 99%
5 10-10 3*10-7 3.1% 77.4% 95.1%
4 5*10-8 3*10-5 15.6% 20.4% 4.8%
3 10-5 0.1% 31.3% 2.1% 0.1%
2 0.1% 2.1% 31.3% 0.1% 10-5

1 4.8% 20.4% 15.6% 3*10-5 5*10-8

0 95.1% 77.4% 3.1% 3*10-7 10-10

True fraction of white balls

N
um

be
r o

f w
hi

te
 b

al
ls

 o
bs

er
ve

d



Ordering
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The ordering algorithm is arbitrarily chosen. The only constraint is that, for each 
value m of the parameter, the integral of the pdf along the x region outside of 
the belt does not exceed 1-CL. 

m

m0

m2

Z

x/2 belt
p(x|m2)dx  0.05



Ordering guidelines
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p(x|m0)
p(x|m0)

Despite arbitrariness, there are some standards and conventions that are usually 
followed in the construction of the region.


First and foremost: the ordering algorithm should be decided and defined prior to 
look at the experimental data. Otherwise one could artificially exclude the result of 
the experiment as long as the excluded are is less than 1-CL. Also, usually one 
wants a connected region

x0Known observed value



Probability ordering
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In the past, many tried to get the shortest possible interval, so that the resulting 
confidence intervals were likely to be more narrow (i.e., measurement more precise). 
(“probability ordering” or “Crow-Gardner ordering”)

p(x|m0)

Unfortunately, such criterion is flawed, because the probability depends on the metric 
used for the observable x, so the shortest interval in one metric isn’t shortest in 
others (think of looking at x or at x’ = ln x)

1. Choose one value for m, m0, and look at p(x|m0)


2. rank the x values in decreasing order of probability


3. start accumulating from the x with highest probability


4. accumulate the other x values until the desired CL is 
reached.


5. the result is the shortest possible region for m=m0


6. Repeat for all m



Issues
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An number of inconsistencies were identified in Neyman constructions based on 
simplistic ordering criteria. Probably the worse were empty confidence regions

Central 90% CL band for a 
Gaussian of unit width

Central 90% CL band for a 
Poisson with unknown mean 

and background b=0.3

What if I observe x = -1.8? or n = 0?  Resulting confidence regions are empty….



Likelihood-ratio ordering (Feldman and Cousins)

In the late 90ies, a better criterion was proposed. Idea 
parallels probability ordering, but rather than  using the 
probability as ordering metric, the likelihood ratio is used.

Gary J. Feldman  (1942–) 
Robert D. Cousins


m

m2

m1

m0

p(x|m)

Criterion does not 
depend only on p(x|m) 
at fixed m but also from    
p(x|m) at other m values 

LR =
p(x|m0)

p(x|m̂)

x

p(x|m0)

p(x|m̂)

Choose a value m0 of the 
parameter and for each x 
calculate



Likelihood-ratio ordering
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1. Choose one value for m, m0  and generate simulated samples of pseudodata accordingly.


2. For each observation x calculate (i) the value of the likelihood at m0, p(x|m0)=L(m0) and (ii) the 
maximum value of the likelihood L(m̂) maximized over the space of m values.


3. Rank all x in decreasing order of likelihood ratio LR=Lx(m0)/Lx(m̂).


4. Start from the x with higher LR and accumulate the others until the desired CL is reached.


5. Repeat for all m

LR-ordering preserves the metric, mostly avoids empty confidence regions  and 
has several other attractive features. It is the most widely used ordering in HEP. 


It is not immune from founded criticism and may lead to paradoxes in specific 
problems, but if you ever will need to quote a confidence region in your analysis it 
is a good idea to take LR-ordering as default option unless there are strong 
motivations against it. 



Likelihood-ratio ordering practice
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Let’s try to reproduce LR-bands. Use the original paper as a reference                 
http://arxiv.org/pdf/physics/9711021v2.pdf and try to reproduce the confidence 
band in Fig 7. Useful and interesting information to understand the LR-ordering is 
also in http://users.physics.harvard.edu/~feldman/Journeys.pdf 

http://arxiv.org/pdf/physics/9711021v2.pdf
http://users.physics.harvard.edu/~feldman/Journeys.pdf


Indifferent distribution
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Suppose that p(x|m) ≈ f(x), which is nearly 
independent on m.  Here, for ε arbitrarily small, 
observing x says very little about m.

m1 m2
x1 0.95 + ε 0.95 - ε
x2 0.05 - ε 0.05 + ε

Intuitively one would choose the 
band that covers the whole space

m1 m2
x1 0.95 + ε 0.95 - ε
x2 0.05 - ε 0.05 + ε

LR-ordering unambiguously would 
choose this one instead

Any confidence region construction should not provide information about m.

m1 m2
x1 0.95 + ε 0.95 - ε
x2 0.05 - ε 0.05 + ε

LR here achieves something nearly magical: conclude something out of a nearly 
uncorrelated information.



Empty intervals with Likelihood-ratio ordering
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There is more than that. 


LR-ordering has ben proposed by Feldman and Cousins as guaranteed not to 
yield empty intervals.


This holds in many practical applications but is not mathematically true by 
construction. 


http://arxiv.org/pdf/hep-ex/9912048v3.pdf

http://arxiv.org/pdf/hep-ex/9912048v3.pdf


Confidence interval formalism
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The goal is to find the range m₋(x) < m < m₊(x) that contains the true value m with 
probability β (typically one chooses β large, like 68% or 90% or 95%)


Given observation x from a pdf p(x|m), the probability content β of the region 
[a,b] in x space is


If the pdf  and true value m are known one can get β given a and b. But when the 
true value of the parameter m is unknown, one has to find another random 
variable z(x,m) such that its pdf is independent of the unknown value of m. If this 
can be found, then one can re-express the above equation into

� = p(a < x < b) =

Z b

a
p(x|m)dx

p(m�(x) < m < m+(x)) = �

A method that yields such an interval possesses the property of coverage.




Coverage
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Coverage is a property of the procedure, not of the single measurement.




Inferring from data  

Choice of the model
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Inference
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Given some data, to do inference I need to 


1. Identify all the known observations x;


2. Identify all the unknown parameters m;


3. Construct a probability model for both



Model building
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In all inferences we use probability models for the observables x and the unknown 
parameters m. 


With model I mean the full structure p ( data | parameters) = p(x|m)


• holding parameters fixed, gives us the probability density function of data, which 
provides the ability to generate pseudo-data via Monte Carlo. 


• holding data fixed gives a likelihood function for parameters


p(x|m) is often (always?) given as granted, but it usually entails major assumptions, 
where our physics knowledge, understanding, and intuition enter strongly.


Model building is necessary both in Frequentist and Bayesian procedures: this is 
the part everyone agrees on. Improving the model is the most efficient way of 
improving your inference




Model building
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The model p(x|m) is somehow a quantitative summary of the analysis. 


If you had to explain or justify your analysis choices, you would tell a story about 
how and why you get to know what you know, based on previous results, auxiliary 
studies and so on. 


The quality of the result is largely tied to how convincing and realistic this story is. 
In HEP there are three main thrusts of motivation/justification for a model.


• Monte Carlo simulation of fundamental physics processes and their detection


• Data-driven model building


• Effective modelling


A real-life data analysis at LHC or elsewhere typically uses a mixture of the three.



Monte Carlo-based modeling
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HEP enjoys the “standard model”: a quantum field theory of the elementary 
particles and their fundamental interactions. Encapsulates dynamics in a relatively 
simple Lagrangian density with 18 free parameters.
1.Phase space is sampled with 
Monte Carlo techniques. 2.The 
dynamics is simulated based on the 
Lagrangian. 3. Perturbation theory is 
used to systematically approximate 
the theory. 4. Interactions of 
particles in the detectors are 
simulated. 5. the results are subject 
to the same reconstruction 
algorithms as in experimental data


We can look at distributions of any 
observables we can measure in data 



Data-driven modeling
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Simulation may not be trustable to the desired precision for all processes. For those 
processes, typically backgrounds, for which simulation isn’t realistic enough, try 
data-driven modeling. 


Use subsets of events in data known to be dominated by the process of interest and 
to model its distributions. Use simulation to determine the coefficients needed to 
extrapolate from the control region to the signal region. Coefficient may have 
experimental and theoretical uncertainties.



Effective (or empiric) modeling
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When everything else fails because the processes are too complex to be reliably 
simulated and control regions in data are not available to determine their features, 
one resorts to empiric modeling. 


Look at data distribution and try to guess shapes, features etc…
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E.g., model the “combinatorial 
background” on the right with a 
square-root-like function that 
appears to adapt fairly well to the 
observed shape



Why?
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Why is this relevant to our topic?


Because the discussion of modeling allows us to introduce a new, and crucial, 
discussion, related to uncertainties that are not statistical, but systematic.



Funny things happen if you’ve got your model wrong
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The number of droplets produced by a charged particle in a 
cloud chamber is proportional to charge Q. A Q=1 particle have 
a Poisson distribution of droplets with μ = 229 (known by 
counting droplets from known particles over the known length). 


In 1969, out of a sample of 55000 particles, McCusker and 
Cairns observed a particle with only 110 droplets. As p(j<110| μ 
= 229) = 10-18 << 1/55000, they claimed evidence for free 
quarks (fractional charge).


Shortly after Adair and Kasha pointed out that in each 
elementary scattering 4 droplets are produced in average. 
Therefore, assuming that always 4 droplets get produced, a 
much reasonable rate of occurrence would be expected from 
ordinary Q=1 particles

p(j < 110/4 ⇡ 28) ⇡
28X

j=1

(229/4)j
e�229/4

j!
⇡ 10�5



Funny things happen if you’ve got your model wrong

80



Inferring from data  

Systematic uncertainties
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What is systematics?
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Any statistical inference is based on p(x|m): observe x to extract information 
about m, assuming to know the distribution p(x|m), that is “the model”. 


The systematic uncertainty is that component of the uncertainty that is due to 
the imperfect knowledge about the shape of the probability distribution p(x;m).

G. Punzi, 2001

Hard to find any precise, rigorous definition. In 
experimental physics one assesses systematic 
uncertainties all the time, but when it comes to define them 
only semi-empiric definitions exist, based on examples.



Nuisance parameters

83

Assume model p(x|m). But the actual model realized may differ. The difference is 
parametrized by the additional dependence on some unknown nuisance parameters 
that are not interesting for the measurement at hand but do influence its outcome.

p(~x|~m) ) p(~x|~m,~s)

Assumed model Actual model

Data
“Interesting” 
parameters

Nuisance 
parameters

The width of p(x|m) connects with the statistical uncertainty. The shape, which 
depends on nuisance parameters s, with the systematic uncertainty.      


Not only we don't know exactly what value of x would be observed if m had some 
definite value; we don’t even know exactly how probable each possible value of x is.  
Cannot define standard deviation for s; would imply knowing the distribution p(s). But 
then s wouldn’t be any longer a nuisance and would get embedded in the model! Can 
only estimate an allowed range for s, and ensure that any result of the inference hold 
for any s in that range.



Bayesian approach
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For Bayesians, s is just another parameter. Assume an a priori distribution for s that 
allows “integrating it out” through marginalization and use the result p(x|m) as 
model for any subsequent (Bayesian) inference.


p(~x; ~m) =

Z
p(~x; ~m,~s)p(~s)d~s

• A significant dependence of results on the chosen prior p(s) may occur


• Results from multiple measurements based on independent data but sharing 
nuisance parameters may get correlated (through common priors)


Typically good avoiding mixing frequentist and Bayesian approaches. E.g., don’t use 
marginalized p(x;m) to get Neyman confidence intervals. Hybrid results are hard to 
interpret. If you assume the distribution of parameter s known, you enter the Bayesian 
realm, hence should rather assume known the distributions of all parameters.
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The goal remains to devise a procedure that guarantees coverage whatever is the 
value of the unknown nuisance parameters. 


Because the allowed and plausible range of the possible true values of the nuisance 
parameters might be large, the coverage requirement may result into overcoverage 
for some values of s.


Finding the optimal procedure to obtain rigorous frequentist confidence intervals in 
the presence of nuisance parameters is the object of current active research in the 
statisticians/physicist community (see papers by, e.g., Rolke, Lopez and Conrad, K. 
Cranmer)


Consensus not yet reached on what is best. However,  at the LHC the generalization 
of the LR ordering using profiled likelihoods gains popularity. This is the only method 
we’ll discuss here.

Frequentist approach — interval estimates 
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Can one generalize the construction based on likelihood-
ratio ordering to multidimensional likelihoods, L(m⃗, s⃗) ? I.e., 
construct a multidimensional confidence belt whose 
intersection with observed value x⃗ is “projected” onto the 
subspace of interesting parameters m⃗ to get the interval?


One can. But has to deal with two serious issues.

Why not just multidimensional LR-ordering?

• Due to geometry, projections of higher dimensional structures into lower-
dimensional subspaces lead to information loss. Structures in the multidimensional 
space overlap and get “shadowed”, leading to broader (i.e. lower-precision) 
intervals that may extend over the whole domain of m, making the inference non 
informative.


• A LR-based construction implies generation and fit of pseudodata that achieve an 
adequate sampling of the space of parameters. If such space is multidimensional, 
the needed computing power quickly diverges,



87

An attractive and promising approach is to perform ratio-ordering on the likelihood 
profiled with respect to its nuisance parameters. This is called a profile-likelihood, 


Not a likelihood, but a lower-dimensional derivation of it: the likelihood is a 
multidimensional function of the physics and nuisance parameters; the profile 
likelihood is a function of the physics parameters only obtained by maximizing the 
likelihood wrt to the nuisance parameters.

Profile-likelihood ratio ordering

Variable Meaning

m Parameters of interest (”physics parameters”)

s Nuisance parameters

m̂, ŝ Parameters that maximize L(x|m, s)

ŝ

⇤
Parameter that maximizes L(x|m = m0, s)

PLR = L(x|m=m0,ŝ
⇤)

L(x|m̂,ŝ)
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Profile-likelihood ratio ordering

1. Choose one value m0 for m and one value s0  for s, and generate pseudodata accordingly


2. For each observation x (i) maximize p(x|m=m0,s)=L(m=m0,s) with respect to s to get 
Lx(m=m0,ŝ*) and (ii) maximize the likelihood L(m,s) over the space of m and s to obtain Lx(m̂,ŝ)


3. Rank all x in decreasing order of profile likelihood ratio PLR=Lx(m=m0,ŝ*)/Lx(m̂,ŝ)


4. Start from the x with higher PLR and accumulate the others until the desired CL is reached.


5. Repeat for all values of m


6. Repeat for values of s sampled in a plausible range

Algorithm is similar to that of the LR ordering.

Need to fit each sample twice, one with all parameters (physics and nuisance) floating, 
and another one with physics parameters fixed to their test value m0.


It has been shown that the PLR is independent of the true values of the nuisance 
parameters s and, asymptotically, its distribution too gets independent of them. 



Inferring from data  

Asymptotic properties of (profile) likelihood ratios
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When solving a given problem, try to avoid solving a more general 
problem as an intermediate step.  

 V.I. Vapnik
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LR- and PLR-ordering a CPU nightmare

Neyman constructions using (P)LR-ordering imply generation and fit of large 
numbers of simulated experiments. These are necessary to determine the (P)LR 
distributions needed to build the confidence belt, for a set of true values of 
physics and nuisance parameters of the likelihood that adequately sample its n-
dimensional space.


Given a target sampling density d, needed computing power grows like dn and 
becomes soon unmanageable (I once dealt with a 27-dimensional case, and that 
was a nightmare, http://arxiv.org/pdf/0810.3229v2.pdf)


Can we use good-enough approximations of the (P)LR distributions for every 
value of the likelihood parameters, and that are based only on the observed 
likelihood function?

http://arxiv.org/pdf/0810.3229v2.pdf
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Wilks' theorem
Asymptotically (i.e. for large N), the distribution of likelihood ratio


approaches a χ² distribution with a number of degrees of 
freedom corresponding to the dimensionality of m. 

Samuel S. Wilks (1906-1964)


This holds independently of the shape of p(x|m) and on the value of m.


Facilitates enormously usage of  likelihood- and profile-likelihood-ratio as ordering 
quantities in the construction of intervals. If the likelihood is regular enough to be in 
asymptotic regime, one can avoid massive production of simulated experiments.


One can use few samples of pseudodata to check if the likelihood is already 
asymptotic. If it is, then trust Wilks' theorem; if not, only pseudodata allow 
determining the needed distributions

�2 ln LR(m0) = �2 ln
p(x|m0)

p(x|m̂)
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Wilks' theorem at work

Remember the graphical construction for the 
variance of a one-dimensional ML estimator?


Wilks' theorem tells us we can use this in any 
number n of likelihood dimensions to find 
approximate central acceptance regions in  
Neyman constructions that use (P)LR-ordering


�2 ln LR(m0) = �2 ln
p(x|m0)

p(x|m̂)
= �

�
�

CL
CL

projection onto the space of parameters of a 3-dimensional 
likelihood at the point where -2lnLR varies by 6.25 units 

identifies a 3-dimensional 90%CL central interval

projection onto the space of parameters of a 1(2)-dimensional 
likelihood at the point where -2lnLR varies by 1.0 units 

identifies a 1(2)-dimensional 68(39)% CL central interval



Wilks' theorem at work (F. James)

One-dimensional Gaussian likelihood

One-dimensional non-Gaussian likelihood

Two-dimensional Gaussian likelihood



(profile) likelihood-ratio as a test statistic
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Interest in the NP lemma is not only theoretical. In many cases where testing an 
hypothesis is needed, one uses the (profile) likelihood ratio as a test statistic. It’s 
known (χ²) asymptotic distribution allow testing with no need to laboriously construct 
LR distributions by generating and fitting pseudodata.

1. Fit data under H0: i.e. with a likelihood 
that only has “background” parameters.


2. Fit data under H1: i.e. with a likelihood 
that includes n additional “signal” free 
parameters


3. The ratio between the resulting values of 
the likelihood functions at their maxima 
is distributed as a χ² with n degrees of 
freedom.


4. Comparison of the ratio obtained in 
data with the relevant χ² distribution 
allows for testing H1 vs H0.

χ²
LR observed in data

fit under H0 fit under H1



Inferring from data  

Biased MLE bias from incomplete pdf (known at 
the LHC as “Punzi effect”)
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A simple fit of sample composition
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Results
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Improving the fit with event-by-event resolution
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Results ????
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Correcting the pdf
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MLE biases

101

The pdf should explicitly include the distribution of any observable that enters the 
event-by-event.


If you don’t include explicitly, the fit will do it for you implicitly, assuming that such 
distribution is the same for all classes of events in your sample.


If that’s not the case, your fit results might get strongly biased.


