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I -INTRODUCTORY 

(a) General Remarks, JNotation, and Definitions 
We shall distinguish two aspects of the problems of estimation: (i) the practical 

and (ii) the theoretical. The practical aspect may be described as follows: 

(ia) The statistician is concerned with a population, nc, which for some reason or 
other cannot be studied exhaustively. It is only possible to draw a sample from 
this population which may be studied in detail and used to form an opinion as to 
the values of certain constants describing the properties of the population 7. For 
example, it may be desired to calculate approximately the mean of a certain character 

possessed by the individuals forming the population -r, etc. 
(ib) Alternatively, the statistician may be concerned with certain experiments 

which, if repeated under apparently identical conditions, yield varying results. 
Such experiments are called random experiments, (see p. 338). To explain or describe 
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the machinery of the varying results of random experiments certain mathematical 
schemes are drawn up involving one or more parameters, the values of which are 
not fixed. The statistician is then asked to provide numerical values of these 
parameters, to be calculated from experimental data and upon the assumption that 
the mathematical model of the experiments is correct. 

The situation may be exemplified by the counts of a-particles ejected by some 
radioactive matter. The physicists have here elaborated a mathematical model 
of the phenomenon involving only one numerical parameter, namely, the average 
duration of life of an atom, and the statistician is asked to use the results of the 
available observations to deduce the numerical value of this parameter. 

In both cases described, the problem with which the statistician is faced is the 
problem of estimation. This problem consists in determining what arithmetical 
operations should be performed on the observational data in order to obtain a result, 
to be called an estimate, which presumably does not differ very much from the true 
value of the numerical character, either of the population 7, as in (ia), or of the 
random experiments, as in (ib). 

(ii) The theoretical aspect of the problem of statistical estimation consists primarily 
in putting in a precise form certain vague notions mentioned in (i). It will be 
noticed that the problem in its practical aspect is not a mathematical problem, 
and before attempting any mathematical solution we must substitute for (i) another 
problem, (ii), having a mathematical sense and such that, for practical purposes, it 
may be considered as equivalent to (i). 

The vague non-mathematical elements in (i) are connected with the sentence 
describing the meaning of the word estimate. What exactly is meant by the 
statement that the value of the estimate " presumably " should not differ very much 
from the estimated number ? The only established branch of mathematics dealing 
with conceptions bearing on the word " presumably " is the calculus of probability. 
It therefore seems natural to base the precise definition of an estimate on conceptions 
of probability. It is easy to see that the connexion of the problem considered with 
the theory of probability does not stop here and that the conditions of the problem 
themselves are, mathematically, clear only if they are expressed in the same terms 
of probability. 

In (ia) we speak of a statistician drawing a sample from the population studied. 
It is known that if the sample is systematically selected and not drawn " at random " 
the conclusions concerning the population n formed on its basis are, as a rule, false 
and at the present state of our knowledge impossible to justify. On the other 
hand, we know that justifiable and frequently correct conclusions are possible only 
when the process of drawing the sample is " random ", though the randomness may 
be at times more or less restricted. I have put the word " random" in inverted 
commas because it is very difficult to define what is meant by it in practice.* We 
try to achieve randomness by more or less complicated devices, using roulette. 

* This point requires a longer discussion, which I hope to be able to publish in a separate paper. 
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dice, etc. Theoretically, however, the situation is clear: when we speak of a 
random sample we mean that it is drawn so that (1) the probability of each 
individual of the population being included in the sample is the same, and (2) separate 
drawings are mutually independent, except in the case of dependence resulting from 
the population being finite, when the individual drawn is not returned to the 
population before the next drawing. 

Leaving apart on one side the practical difficulty of achieving randomness and the 
meaning of this word when applied to actual experiments, I want to call attention 
to the fact that the conditions of the problem in (ia) may be mathematically described 
as follows. 

Denote X, Y, ..., Z, the characters of the individuals of the population rt, in 
which we are interested and by x,y, . .. . z, respectively the values of these characters 

corresponding to some particular individual. For example, if the population n 
consists of certain plants, X may mean the weight of the roots, Y the colour of the 
flowers, Z the weight of the seeds, etc. The method of random sampling adopted, 
together with the properties of the population nt, some of which may be known and 
others doubtful, determine the probability,* say P {E}, of the occurrence of any 
possible system, E, of values of X, Y, . . . ., Z in the individuals which may be drawn 
to form the sample. Denote by 0, the numerical character of the population n 
which it is desired to estimate : this, for example, may be the mean value of X, the 
regression coefficient of Z on X, the mean square contingency of Z and Y, etc. The 
probability P {E} will depend on the value of 01 and in most cases on the values of 
certain other parameters, say, 02, 03, . . ., etc. 

We see, therefore, that the problem with which the theoretical statistician is faced 
is as follows: 

Sampling randomly from the population T, it is possible to obtain samples, say 

E1, E ...... . . . .. (1) 

where each sample is described by means of values of the characters X, Y, . . ., Z, 
corresponding to each of the individuals forming the sample. The probability of 
any sample Ei, say P {E,I 01, 0, ... 0j, depends on a certain number, 1, of para- 
meters ,O, the values of which are unknown, describing the properties of the 
population t. The problem consists in determining how to use the sample which 
may be actually obtained in order to estimate 01. 

We see that the conditions of the problem in (ia) are expressed in terms of pro- 
bability. The same holds good with regard to the problem in (ib), which shows 
that the distinction between (ia) and (ib) is only superficial. In fact, random 
experiments differ from those which are not considered as random only by the cir- 
cumstance that the mathematical model devised for their description involves 

* If the population tn is finite. Otherwise the method of sampling and the properties of the 
population will determine the elementary probability law of X, Y, ..., Z considered as random 
variables. For the definitions of random variables and their probability laws, see p. 340 below. 

2 Z 2 
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probabilities. Each model of this kind determines the range of the possible results 
of random experiments and also the probability of each such result, depending upon 
one parameter or more, the numerical value of which is unknown. 

We come to the conclusion that both the conditions of the problem of estimation 
and the satisfactory solution sought, if expressed accurately, are expressed in terms 
of probability. Before we proceed to the final formulation of the problem, it will 
be useful to give a short review of the forms of some solutions which have been 
advanced in the past. For this we shall need to define the terms probability, random 
variable, and probability law. These definitions are needed not because I introduce 
some new conceptions to be described by the above terms, but because the theory 
which is developed below refers only to some particular systems of the theory of 
probability which at the present time exist,* and it is essential to avoid misunder- 
standings. 

I find it convenient to use the word probability in the following connexion : "the 
probability of an object, A, having a property B ". This may include as particular 
cases : " probability of a result, A, of a certain experiment having the property B of 
actually occurring " (= probability of the result A - for short) and " the probability 
of a proposition, A, of having the property, B, of being true ". All these ways of 
speaking could be shortened in obvious ways. 

I want to emphasize at the outset that the definition of probability as given below 
is applicable only to certain objects A and to certain of their properties B-not to all 
possible. In order to specify the conditions of the applicability of the definition of 
the probability, denote by (A) the set of all objects which we agree to denote by A. 
(A) will be called the fundamental probability set. Further, let (B) denote the set of 
these objects A which possess some distinctive property B and finally, ((B)), a certain 
class of subsets (B') , (B"), . . ., corresponding to some class of properties B', B", etc. 

It will be assumedt 
(1) that the class ((B)) includes (A), so that (A) s ((B)) and 

* It may be useful to point out that although we are frequently witnessing controversies in which 
authors try to defend one or another system of the theory of probability as the only legitimate, I am 
of the opinion that several such theories may be and actually are legitimate, in spite of their occasionally 
contradicting one another. Each of these theories is based on some system of postulates, and so long 
as the postulates forming one particular system do not contradict each other and are sufficient to 
construct a theory, this is as legitimate as any other. In this, of course, the theories of probability 
are not in any sort exceptional. 

Both Euclidean and non-Euclidean geometries are equally legitimate, but, e.g., the statement 
"the sum of angles in a linear triangle is always equal to 7t " is correct only in the former. In 
theoretical work the choice between several equally legitimate theories is a matter of personal taste 
only. In problems of application the personal taste is again the decisive moment, but it is certainly 
influenced by considerations of the relative convenience and the empirical facts. 

t The problem of the definition of measure in relation to the theory of probability has been 
recently discussed by -LOMNICKI and ULAM (1934), who quote an extensive literature. A systematic 
outline of the theory of probability based on that of measure is given by KOLMOGOROFF (1933). 
See also BOREL (1925-26) ; LEVY (1925) ; FRECHET (1937). 
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(2) that for the class ((B)) it was possible to define a single-valued function, 
m (B), of (B) which will be called the measure of (B). The sets (B) belonging to 
the class ((B)) will be called measurable. The assumed properties of the measure 
are as follows: 

(a) Whatever (B) of the class ((B)), m (B) _ 0. 

(b) If (B) is empty (does not contain any single element), then it is measurable and 
m (B) = 0. 

(c) The measure of (A) is greater than zero. 

(d) If (B1), (B2) ... (BJ) ... is any at most denumerable set of measurable subsets, 
then their sum, (B,i), is also measurable. If the subsets of neither pair (Bi) and 

00 

(Bj) (where i ^ j) have common elements, then m (ESB) = X m (B,). 
i-=1 

(e) If (B) is measurable, then the set (B) of objects A non-possessing the property 
B is also measurable and consequently, owing to (d), m (B) + m (B) = m (A). 

Under the above conditions the probability, P{BIA}, of an object A having the 

property B will be defined as the ratio P {BIA) = m (B) The probability P{BI|A}, m (A)' 
or P {B) for short, may be called the absolute probability of the property B . Denote 
by B1 B2 the property of A consisting in the presence of both B1 and B2. It is easy 
to show that if (B1) and (B2) are both measurable then (B1 B2) will be measurable 
also. If m (B2) > 0, then the ratio, say P {B JB2} =: m (B1B2)/m (B2), will be called 
the relative probability of B1 given B2. This definition of the relative probability 
applies when the measure m (B2) as defined for the fundamental probability set (A) 
is not equal to zero. If, however, m (B2) = 0 and we are able to define some other 
measure, say m', applicable to (B2) and to a class of its subsets including (B1 B2) such 
that m' (B2) > 0, then the relative probability of Bi given B2 will be defined as 
P{B1IB2} = m' (B1B2)/m' (B2). Whatever may be the case, we shall have P{B1B2} 

P{BI}P{B2IBB}= P{B2}P{B, IB2}. 
It is easy to see that if the fundamental probability set is finite, then the number of 

elements in any of its subsets will satisfy the definition of the measure. On the other 
hand, if (A) is the set of points filling up a certain region in n-dimensioned space, 
then the measure of Lebesgue will satisfy the definition used here. These two 
definitions will be used wherever applicable. 

If (A) is infinite but the objects A are not actually points (e.g., if they are certain 
lines, etc.), the above definition of probability may be again applied, provided it is 
possible to establish a one to one correspondence between the objects A and other 
objects A', forming a class of sets where the measure has already been defined. 
If (B) is any subset of (A) and (B') the corresponding subset of (A'), then the measure 
of (B) may be defined as being equal to that of (B'). It is known that a similar 
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definition of measure of subsets of (A) could be done in more than one way. Such 
is, for instance, the historical example considered by BERTRAND, POINCARE, and BOREL 

when the objects A are the chords in a circle C of radius r and the property B consists 
of their length, 1, exceeding some specified value, B. It may be useful to consider 
two of the possible ways of treating this problem. 

1. Denote by x the angle between the radius perpendicular to any given chord A 
and any fixed direction. Further, lety be the distance of the chord A from the centre 
of the circle C. If A' denotes a point on the plane with coordinates x andy, then 
there will be a one to one correspondence between the chords A of length 
0 1 < 2r and the points of a rectangle, say (A'), defined by the inequalities 
0 < x c 27t and 0 <Ky r. The measure of the set of chords A with lengths 
exceeding B could be defined as being equal to the area of that part of (A') where 
o < y /r2 - (?B)2. It follows that the probability in which we are interested is 
P{l > B) (r2 -(B)2) r-1 

2. Denote by x and y the angles between a fixed direction and the radii con- 
necting the ends of any given chord A. If A" denotes a point on a plane with 
coordinates x andy, then there will be a one to one correspondence between the 
chords of the system (A) and the points A" within the parallelogram (A") deter- 
mined by the inequalities 0 < x c 27, x - y c x + x. The measure of the set of 
chords A with their lengths exceeding B may be defined as being equal to the area of 
that part of (A") where 2r sin y > B. 

Starting with this definition P {I > B} - 1 -2 arc sin (B/2r) 7r-1. 
It is seen that the two solutions differ, and it may be asked which of them is correct. 

The answer is that both are correct but they correspond to different conditions of the 
problem. In fact, the question " what is the probability of a chord having its length 
larger than B " does not specify the problem entirely. This is only determined when 
we define the measure appropriate to the set (A) and its subsets to be considered. 
We may describe this also differently, using the terms "random experiments " and 
" their results ". We may say that to have the problem of probability determined, 
it is necessary to define the method by which the randomness of an experiment is 
attained. Describing the conditions of the problem concerning the length of a chord 
leading to the solution (1), we could say that when selecting at random a chord A, 
we first pick up at random the direction of a radius, all of them being equally 
probable, and then, equally at random, we select the distance between the centre of 
the circle and the chord, all values between zero and r being equally probable. 
It.is easy to see what would be the description in the same language of the random 
experiment leading to the solution (2). We shall use sometimes this way of speaking, 
but it is necessary to remember that behind such words, as e.g., " picking up at 
random a direction, all of them being equally probable ", there is a definition of the 
measure appropriate to the fundamental probability set and its subsets. I want to 
emphasize that in this paper the sentence like the one taken in inverted commas is 
no more than a way of describing the fundamental probability set and the appropriate 
measure. rThe conception of" equally probable " is not in any way involved in the 
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definition of probability adopted here, and it is a pure convention that the state- 
ment 

\ /" For the purpose of calculating the 
probabilities concerning chords 
in a circle, the measure of any set 

" In picking up at random a chord, (A1) of chords is defined as that of 
we first select a direction of radius, means no the set (A'1) of points with co- 
all of them being equally probable more and ordinates x and y such that for 
and then we choose a distance be- no less any chord A1 in (A1), x is the 
tween the centre of the circle and than direction of the radius perpendicu- 
the chord, all values of the distance lar to A1 andy the distance of A1 
between zero and r being equally from the centre of the circle. 
probable." . (A,) is measurable only if (A'1) is 

2 \SO.'e 

However free we are in mathematical work in using wordings we find convenient, 
as long as they are clearly defined, our choice must be justified in one way or another. 
The justification of the way of speaking about the definition of the measure within 
the fundamental probability set in terms of imaginary random experiments lies in 
the empirical fact, which BORTKIEWICZ insisted on calling the law of big numbers. 
This is that, given a purely mathematical definition of a probability set including 
the appropriate measure, we are able to construct a real experiment, possible to 
carry out in any laboratory, with a certain range of possible results and such that if 
it is repeated many times, the relative frequencies of these results and their different 
combinations in small series approach closely the values of probabilities as calculated 
from the definition of the fundamental probability set. Examples of such real 
random experiments are provided by the experience of roulette (BORTKIEWICZ, 
1917), by the experiment with throwing a needle* so as to obtainn an analogy to the 
problem of Buffon, and by various sampling experiments based on TIPPETT'S rables 
of random numbers (1927). 

These examples show that the random experiments corresponding in the sense 
described to mathematically defined probability sets are possible. However, 
frequently they are technically difficult, e.g., if we take any coin and toss it many 
times, it is very probable that the frequency of heads will not approach 1. To get 
this result, we must select what could be called a well-balanced coin and we have to 
work out an appropriate method of tossing. Whenever we succeed in arranging the 
technique of a random experiment, say E, such that the relative frequencies of its 
different results in long series sufficiently approach, i:n our opinion, the probabilities 
calculated from a fundamental probability set (A), we shall say that the set (A) 
adequately represents the method of carrying out the experiment E. The theory 
developed below is entirely independent of whether the law of big numbers holds 

* This is mentioned by BOREL (1910). I could not find the name of the performer of the 
experiment. 
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good or not. But the applications of the theory do depend on the assumption 
that it is valid. The questions dealt with in the present section are of fundamental 
importance. However, they do not constitute the main part of the paper and there- 
fore are necessarily treated very briefly. The readers who may find the present 
exposition not sufficiently clear may be referred for further details to the work 
of KOLMOGORFOFF (1933, see particularly p. 3 et seq.). I should state also that 
an excellent theoretical explanation of the experimental phenomena mentioned, 
connected with the previous work of POINCARE and SMOLUCHOWSKI, has been 

recently advanced by HOPF (1934). 
We shall now draw a few obvious but important conclusions from the definition 

of the probability adopted. 
(1) If the fundamental probability set consists of only one element, any probability 

calculated with regard to this set must have the value either zero or unity. 
(2) If all the elements of the fundamental probability set (A) possess a certain 

property Bo, then the absolute probability of Bo and also its relative probability 
given any other property B1, must be equal to unity, so that P {Bo}= P {BoIB} = 1. 

On the other hand, if it is known only that P {Bo} = 1, then it does not necessarily 
follow that P {BoIB1} must be equal to unity. 

We may now proceed to the definition of a random variable. We shall say that 
x is a random variable if it is a single-valued measurable function (not a constant) 
defined within the fundamental probability set (A), with the exception perhaps of 
a set of elements of measure zero. We shall consider only cases where x is a real 
numerical function. If x is a random variable, then its value corresponding to any 
given element A of (A) may be considered as a property of A, and whatever the real 
numbers a < b, the definition of (A) will allow the calculation of the probability, 
say P {a c x < b} of x having a value such that a c x < b. 

We notice also that as x is not constant in (A), it is possible to find at least one 

pair of elements, A1 and A2, of (A) such that the corresponding values of x, say 
x1 < x2, are different. If we denote by B the property distinguishing both A1 and A2 
from all other elements of (A) and if a < b are two numbers such that a < xl < b 
< x then P {a : x < bIB} 1. It follows that if x is a random variable in the 
sense of the above definition, then there must exist such properties B and such 

numbers a < b that 0 < P {a c x < bIB) < 1. 
It is obvious that the above two properties are equivalent to the definition of a 

random variable. In fact, if x has the properties (a) that whatever a < b the 
definition of the fundamental probability set (A) allows the calculation of the 

probability P {a c x < b}, and (b) that there are such properties B and such numbers 

a < b that 0 < P (a c x < bIB) < 1, then x is a random variable in the sense of the 
above definition. 

The probability P {a c x < b} considered as a function of a and b will be called 
the integral probability law of x. 

A random variable is here contrasted with a constant, say 0, which will be defined 
as a magnitude, the numerical values of which corresponding to all elements of the 
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set (A) are all equal. If 0 is a constant, then whatever a < b, and B, the probability 
P {a s 0 < blB} may have only values unity or zero according to whether 0 falls in 
between a and b or not. 

Keeping in mind the above definitions of the variables, in discussing them we shall 
often use the way of speaking in terms of random experiments. In the sense of the 
convention adopted above, we may say that x is a random variable when its values 
are determined by the results of a random experiment. 

It is important to keep a clear distinction between random variables and unknown 
constants. The 1000th decimal, Xo00o, in the expansion of r = 3 14159... is a 
quantity unknown to me, but it is not a random variable since its value is perfectly 
fixed, whatever fundamental probability set we choose to consider. We could say 
alternatively that the value that Xo000 may have does not depend upon the result 
of any random experiment. 

Similarly, if we consider a specified population, say the population r1935 of persons 
residing permanently in London during the year 1935, any character of this popula- 
tion will be a constant. In the sense of the terms used here, there will be no practical 
meaning in a question concerning the probability that the average income, say 
I1935, of the individuals of this population is, say, between $100 and J300. As the 
fundamental probability set consists of only one element, namely I1935, the value of 
this probability is zero or unity, and to ascertain it we must discover for certain 
whether C100 c 11935 < f300 or not. This is, of course, possible, though it might 
involve great practical difficulty, just as it is possible to find the actual value of 
Xl000, the 1000th figure in the expansion of Tr. Any calculations showing that 
P {100 5 11935 < 300} has a greater value than zero and smaller than unity must be 
either wrong or based on some theory of probability other than the one considered 
here. 

This is the point where the difference between the theory of probability adopted 
here and that developed by JEFFREYS (1931) comes to the front. According to the 
latter, previous economic knowledge may be used to calculate the probability 
P {a I11935 < blB} where a < b are any numbers and the result of the calculations 
may be represented by any fraction, not necessarily by zero or unity. 

The above examples must be contrasted with the following ones. We may con- 
sider the probability of a figure X, in the expansion of7r falling between any specified 
limits a < b and find it to be equal, e.g., to 1. This is possible when we first define 
a random method of drawing a figure out of those which serve to represent the 
expansion of 7. If this is done, then X is a random variable and the Xo000 previously 
defined will be one of its particular values. 

Similarly, it is probably not impossible to construct a more or less adequate 
mathematical model of fluctuations in the size of income, in which the yearly average 
income, I, of the permanent population of London will be a random variable. The 
I1935 previously defined will be a particular value of I, observed at the end of the 
year 1935. 

It is true that any constant, i, might be formally considered as a random variable 
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with the integral probability law P{a c i < b} having only values unity or zero 
according to whether i falls between a and b or not. If we pass from letters to 
figures this&will lead to formulae like P {1 ! 2 < 3} - 1, or P {3 s 2 < 4} = 0. 

Of course, in practice we shall have generally some unknown number f instead of 
2 in the above formulae and accordingly we shall not know what are the actual values 
of the probabilities. In order to find these values, it would be necessary to obtain 
some precise information as to the value of [. It follows that the consideration of 
such probabilities is entirely useless, since whatever we are able to express in using 
them, we can say more simply by means of equations or inequalities. 

For this reason, when defining a random variable, we require its probability law 
to be able to have values other than zero and unity. The other case may be set 
aside as trivial. 

In the following development we shall have to consider at once several random 
variables 

X1, X2, ... X . .... . ....... (2) 

It will be convenient to denote by E any combination of their particular values 
and to interpret each such combination E as a point (the sample point) in an n- 
dimensional space W (the sample space), having its coordinates equal to the 
particular values of the variables (2). If w denotes any region in W, then the 
probability, say P {Esw}, of the sample point falling within w considered as a function 
of w will be described as the integral probability law of the variables (2). 

We shall consider only cases where there exists a non-negative function 
p (E)-- p (x,..., xn) determined and integrable in the whole sample space W, 
such that for any region w 

P {Ew} - . p (E) dxi" ... dx. ..... .. (3) 
J Jw 

The function p (E) will be called the elementary probability law of the X's in (2). 
It is easy to show that when p (x,, .. ., xn_, x,) is known, then p (x,, .., x,,_) may be 
calculated by integrating p (x,,... xn) with regard to xn from - oo to + o. 

When dealing with several probability laws calculated in relation to probability 
sets depending on some variables, say y .. . y,, in order to avoid misunderstandings, 
we shall use the notation p (x . . . x,yyl ... ',) or p (E[y1 .. y ..m) If p (x, . .. Xk, 
Xk+l1 ... x.) is the probability law of x,, X.. . x., Xk+1,. . . Xn and if for a given system 
of the x's, p (xk, . . . xn) > 0 then, for that system, the relative probability law of 
X1, x2 .. . Xk given x+1, . .. x., denoted byp (x, ... . Jxk+l, .. x"), will be defined by 
the relation p (Xl, x2, . . . x .. .x) zp (xk+, . .. x) p (xl, ... XklXk+1, X. ). 

With the above definitions and notation we may now formulate the problem of 
estimation as follows: 
Let 

X1, X ... X ............ (4) 
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be a system of n random variables, the particular values of which may be given by 
observation. The elementary probability law of these variables 

p (xl . . . Xn1, 02, ? . 0) .......... (5) 

depends in a known manner upon I parameters 0 ... 01, the values of which are not 
known. It is required to estimate one (or more) of these parameters, using the 
observed values of the variables (4), say 

x 1 , x 2 * * X n ..* * * * * * * * * * (6) 

(b) Review* of the Solutions of the Problem of Estimation Advanced Hereto 

The first attempt to solve the problem of estimation is connected with the theorem 
of Bayes and is applicable when the parameters 01, 02, . . 6, in (5) are themselves 
random variables. The theorem of Bayes leads to the formula 

P (01, 02, ... 0. IX'1, X' 2, .. Xn) 

p (01, 02 . . . 0) p (x' , X 2, ... xni 01 . 0l) 

I. JP (0, 02, ... . ,) p (X'1, X' , .. X 
01'. , ... 0,) d . . . d,, (7). 

representing the probability law of 01, 02,... 0,, calculated under the assumption 
that the observations have provided the values (6) of the variables (4). Here 
p (01, ... 0,) denotes the probability law of the 0's, called a priori, and the integral 
in the denominator extends over all systems of values of the O's. The function 
p (01, 02, . . . 1x't1, x'2 ... x') is called the a posteriori probability law of 0's. In 
cases where the a priori probability law p (01, 02 ... 0 ) is known, the formula (7) 
permits the calculation of the most probable values of any of the O's and also of the 
probability that 0,, say, will fall in any given interval, say, a c 0i < b. The most 

v 

probable value of 0,, say 0,, may be considered as the estimate of 0, and then the 
probability, say v v 

v 

P{Oi--- A < 0i < 0i + A IE'}, ......... (8) 

will describe the accuracy of the estimate 0i, where A is any fixed positive number 
and E' denotes the set (6) of observations. 

It is known that, as far as we work with the conception of probability as adopted in 
this paper, the above theoretically perfect solution may be applied in practice only 
in quite exceptional cases, and this for two reasons: 

(a) It is only very rarely that the parameters 01, 02, ... 0, are random variables. 
They are generally unknown constants and therefore their probability law a priori 
has no meaning. 

* This review is not in any sense complete. Its purpose is to exemplify the attempts to solve the 
problem of estimation. 
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(b) Even if the parameters to be estimated, 01, 02, . . .0, could be considered as 
random variables, the elementary probability law a priori, p (01, 02, ... 0.), is 

usually unknown, and hence the formula (7) cannot be used because of the lack of 
the necessary data. 

When these difficulties were noticed, attempts were made to avoid them by 
introducing some new principle lying essentially outside the domain of the objective 
theory of probability. 

The first of the principles advanced involved the assumption that when we have 
no information as to the values of the O's, it is admissible to substitute in formula (7) 
some function of the O's selected on intuitive grounds, e.g., 

p (0 , 02,. . . 0) -- const. .......... (9) 
and use the result, say 

p, ( 1,... * I E') = - (xl,x2, : 
n^31 * ^^-----_ .... (10) 

.Jp (x'l, x'2 ... x'e 01,. . 0,) dOi ... dA 

as if this were the a posteriori probability law of the O's. 
This procedure is perfectly justifiable on the ground of certain theories of 

probability, e.g., as developed by HAROLD JEFFREYS, but it is not justifiable on the 
ground of the theory of probability adopted in this paper. In fact, the function 
Pi (01 ... . IE') as defined by (10) will not generally have the property serving as a 
definition of the elementary probability law of the O's. Its integral over any region 
w in the space of the O's will not be necessarily equal to the ratio of the measures of 
two sets of elements belonging to the fundamental probability set, which we call the 
probability. Consequently, if the experiment leading to the set of values of the x's 
is repeated many times and if we select such experiments (many of them) in which 
the observed values were the same, x1, x'2 ... x',, the assumed validity of the law 
of big numbers (in the sense of BORTKIEWIZ) will not guarantee that the frequency 

v v 

of cases where the true value of O, falls within Oi - A < O, < Oi + A will approach 
the value of (8), if this is calculated from (10). Moreover, if the 0's are 
constant, this frequency will be permanently zero or unity, thus essentially differing 
from (8). 

The next principle I shall mention is that advocating the use of the so-called 
unbiassed estimates and leading to the method of least squares. Partly following 
MARKOFF (1923), I shall formulate it as follows : 

In order to estimate a parameter 0, involved in the probability law (5), we should 
use an unbiassed estimate or, preferably, the best unbiassed estimate. 

A function, Fi, of the variables (4) is called an unbiassed estimate of Oi if its mathe- 
matical expectation is identically equal to ,O, whatever the actual values of 
0, 02,^... . Thus, 

(Fi,)- O ............. (11) 
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An unbiassed estimate F, is called the best if its variance, say 

VF,= (F,--,) , ........... (12) 

does not exceed that of any other unbiassed estimate of 0,. 
It is known that MARKOFF provided a remarkable theorem leading, in certain 

cases, to the calculation of the best of the unbiassed estimates which are linear 
functions of the variables (4). The advantage of the unbiassed estimates and the 
justification of their use lies in the fact that in cases frequently met the probability of 
their differing very much from the estimated parameters is small. 

The other principle, which is to a certain extent in rivalry with that of the 
unbiassed estimate, is the principle of maximum likelihood. This consists in con- 
sidering L const. X p (x'., x'2... x', 0 .. . 09), where x'i denotes the observed 
value of X,, as a function of the parameters 0,, called the likelihood. It is advocated 
that the values of L may serve as a measure of our uncertainty or confidence in the 
corresponding values of the O's. Accordingly, we should have the greatest con- 

A A A A 

fidence in the values, say, 01, 02, ... 0,, for which L is a maximum. 0O obviously is 
a function of x' ... x'; it is called the maximum likelihood estimate of O;. 

As far as I am aware, the idea of the maximum likelihood estimates is due to 
KARL PEARSON, who applied the principle in 1895 (see particularly pp. 262-265), 
among others to deduce the now familiar formula for estimating the coefficient of 
correlation. However, he did not insist much on the general applicability of the 
principle. This was done with great emphasis by R. A. FISHER, who invented the 
term likelihood, and in a series of papers (FISHER, 1925) stated several important 
properties of the maximum likelihood estimates, to the general effect that it is 
improbable that their values will differ very much from those of the parameters 
estimated. In fact, the maximum likelihood estimates appear to be what could be 
called the best " almost unbiassed " estimates. Many of FISHER'S statements, partly 
in a modified form, were subsequently proved by HOTELLING (1932), DOOB (1934), 
and DUGU, (1936). An excellent account of the present state of the theory is given 
by DARMOIS (1936). 

In certain cases the unbiassed estimates are identical with those of maximum 
likelihood; in others we know only the maximum likelihood estimate, and then 
there is no " competition " between the two principles. But it sometimes happens 
that both principles may be applied and lead to different results. Such is, for instance, 
the case when it is known that the variables (4) are all independent and each of them 
follows the same normal law, so that 

/ 1 \ _ s($i-) 

p(E, a) = v> e 2a2** (13) 

The maximum likelihood estimate of the variance, 2, is 

1I 1 
C2=1 2: (x,-X)2, x= . x;, .. ... . (14) nif =l n i . I 

345 



J. NEYMAN 

while the unbiassed estimate is, say, 
1 n 

C2 _ _ (X i-x) ........ ( j15) 
n - t X 1 

and the question arises which of them to use. Obviously this is a question of 

principle, and the arguments, like "you must use (15) because the expectation of C2 

is equal to c2 ", do not prove much by themselves. It is perhaps remarkable that 
some of the authors who, when discussing theory, advocate the use of the maximum 
likelihood estimate, use in practice the estimate (15). 

The formulae (14) and (15) may be used to illustrate the meaning of the expression 
" almost unbiassed" estimate, used above. Familiar formulae show that the 

expectation of 2 is 
? (c2) = (l )a2 .... ........ (16) 

thus showing a "negative bias," n-12. If we increase the number of observations, 

n, the bias tends to zero, which justifies the terms " almost unbiassed " or " con- 

sistent " estimate attached to (14). 

(c) Estimation by Unique Estimate and by Interval 

In the preceding pages we have described briefly three of the several important 
principles advanced for the calculation of estimates. All of them represent attempts 
to solve the problem which might be called the problem of a unique estimate of an 

unknown parameter which reduces to determining a function of the observations, 
the value of which presumably does not differ very much from that of the estimated 

parameter. 
We shall now call attention to the fact that apart from the problem of a unique 

estimate, the requirements of practical statistical work brought to the front another 

problem which we shall call the problem of estimation by interval. 
Denote generally by 0 the parameter to be estimated and by T its estimate, deduced 

from some principle or another. Whatever the principle, it is obviously impossible 
to assume that in any particular case T is exactly equal to 0. Therefore, the 

practical statistician required some measure of the accuracy of the estimate T. The 

generally accepted method of describing this accuracy consists in calculating the 

estimate, say ST, of the variance VT of T and in writing the result of all the calcula- 

tions in the form T ? ST. 
Behind this method of presenting the results of estimating 0, there is the idea that 

the true value of 0 will frequently lie between the value of T minus a certain multiple 
of ST and T plus perhaps some other multiple of ST. Therefore, the smaller ST the 

more accurate is the estimate T of 0. 
If we look through a number of recent statistical publications, we shall find that 

it is exceedingly rare that the values of unique estimates are given without the ? ST. 
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We shall find also that the comments on the values of T are largely dependent on 
those of ST. This shows that what the statisticians have really in mind in problems 
of estimation is not the idea of a unique estimate but that of two estimates having 
the form, say 

0 - -T -kST and = T + k ST,.... (17) 

where k1 and k2 are certain constants, indicating the limits between which the true 
value of 0 presumably falls. 

In this way the practical work, which is frequently in advance of the theory, 
brings us to consider the theoretical problem of estimating the parameter 0 by means 
of the interval (0, 0), extending from 0 to 0. These limits will be called the lower 
and upper estimates of 0 respectively. It is obvious that if the values of k1 and k2 
in (17) are not specified, then the real nature of the two estimates is not determined. 

In what follows, we shall consider in full detail the problem of estimation by 
interval. We shall show that it can be solved entirely on the ground of the theory 
of probability as adopted in this paper, without appealing to any new principles or 
measures of uncertainty in our judgements. In so doing, we shall try to determine 
the lower and upper estimates, 0 and 0, which assure the greatest possible accuracy 
of the result, without assuming that they must necessarily have the commonly 
adopted form (17). 

II-CONFIDENCE INTERVALS 

(a) Statement of the Problem 

After these somewhat long preliminaries, we may proceed to the statement of the 
problem in its full generality. 

Consider the variables (4) and assume that the form of their probability law (5) is 
known, that it involves the parameters 01, 02, . .., 0, which are constant (not 
random variables), and that the numerical values of these parameters are unknown. 
It is desired to estimate one of these parameters, say 01. By this I shall mean that 
it is desired to define two functions 0 (E) and 0 (E) z8 0 (E), determined and single 
valued at any point E of the sample space, such that if E' is the sample point deter- 
mined by observation, we can (1) calculate the corresponding values of 0 (E') and 
0 (E'), and (2) state that the true value of 01, say 01?, is contained within the limits 

H (E') c 01? c 0 (E'), .......... (18) 

this statement having some intelligible justification on the ground of the theory of 
probability. 

This point requires to be made more precise. Following the routine of thought 
established under the influence of the Bayes Theorem, we could ask that, given the 
sample point E', the probability of 01? falling within the limits (18) should be large, 
say, a = 0 99, etc. If we express this condition by the formula 

P{O (E') < 01? < 0 (EE') , ........ (19) 
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we see at once that it contradicts the assumption that 01? is constant. In fact, on 
this assumption, whatever the fixed point E' and the values 0 (E') and 0 (E'), the 
only values the probability (19) may possess are zero and unity. For this reason we 
shall drop the specification of the problem as given by the condition (19). 

Returning to the inequalities (18), we notice that while the central part, 01?, is a 
constant, the extreme parts 0 (E') and 0 (E') are particular values of random 
variables. In fact, the coordinates of the sample point E are the random variables 
(4), and if 0 (E) and 6 (E) are single-valued functions of E, they must be random 
variables themselves. 

Therefore, whenever the functions 0 (E) and 0 (E) are defined in one way or 
another, but the sample point E is not yet fixed by observation, we may legitimately 
discuss the probability of 0 (E) and 0 (E) fulfilling any given inequality and in 
particular the inequalities analogous to (18), in which, however, we must drop 
the dashes specifying a particular fixed sample point E'. We may also try to select 
8 (E) and 0 (E) so that the probability of 0 (E) falling short of 010 and at the same 
time of 0 (E) exceeding 01?, is equal to any number a between zero and unity, fixed 
in advance. If 01? denotes the true value of 01, then of course this probability must 
be calculated under the assumption that 01? is the true value of 01. Thus we can 
look for two function 0 (E) and 0 (E), such that 

P{ (E) ( E) ? 8} = . . . . ... (20) 

and require that the equation (20) holds good whatever the value 01? of 01 and 
whatever the values of the other parameters 02, 03, .., 0,, involved in the probability 
law of the X's may be. 

The functions 0 (E) and 0 (E) satisfying the above conditions will be called the 
lower and the upper confidence limits of 01. The value a of the probability (20) 
will be called the confidence coefficient, and the interval, say 8 (E), from 0 (E) to 
0 (E), the confidence interval corresponding to the confidence coefficient ct. 

It is obvious that the form of the functions 0 (E) and 0 (E) must depend upon the 

probability law p (E 01 ... . 0). 
It will be seen that the solution of the mathematical problem of determining the 

confidence limits 0 (E) and 0 (E) provides the solution of the practical problem of 
estimation by interval. For suppose that the functions 0 (E) and 0 (E) are deter- 
mined so that the equation (20) does hold good whatever the values of all the 

parameters 01, 2,. .. 0. may be, and ac is some fraction close to unity, say a = 0 99. 
We can then tell the practical statistician that whenever he is certain that the form 
of the probability law of the X's is given by the function p (El01, 2, ... 0,) which 
served to determine 0 (E) and 0 (E), he may estimate 01 by making the following 
three steps : (a) he must perform the random experiment and observe the particular 
values x1, X2, .. x. of the X's; (b) he must use these values to calculate the corre- 
spondingvalues of 0 (E) and 0(E) ; and (c) he must state that 0 (E) < 01? < 6 (E), 
where 1?0 denotes the true value of 01. How can this recommendation be 
justified ? 

348 



STATISTICAL ESTIMATION 

The justification lies in the character of probabilities as used here, and in the law 
of great numbers. According to this empirical law, which has been confirmed by 
numerous experiments, whenever we frequently and independently repeat a random 
experiment with a constant probability, cc, of a certain result, A, then the relative 
frequency of the occurrence of this result approaches cc. Now the three steps (a), 
(b), and (c) recommended to the practical statistician represent a random experiment 
which may result in a correct statement concerning the value of 01. This result may 
be denoted by A, and if the calculations leading to the functions 0 (E) and 0 (E) are 
correct, the probability of A will be constantly equal to cc. In fact, the statement (c) 
concerning the value of 01 is only correct when 0 (E) falls below 001 and 0 (E), 
above 01?, and the probability of this is equal to cc whenever 01? is the true value of 01. 
It follows that if the practical statistician applies permanently the rules (a), (b) and 
(c) for purposes of estimating the value of the parameter 0,, in the long run he will be 
correct in about 99 per cent. of all cases. 

It is important to notice that for this conclusion to be true, it is not necessary that 
the problem of estimation should be the same in all the cases. For instance, during 
a period of time the statistician may deal with a thousand problems of estimation and 
in each the parameter 01 to be estimated and the probability law of the X's may be 
different. As far as in each case the functions 0 (E) and 0 (E) are properly calculated 
and correspond to the same value of cc, his steps (a), (b), and (c), though different in 
details of sampling and arithmetic, will have this in common-the probability of their 
resulting in a correct statement will be the same, cc. Hence the frequency of actually 
correct statements will approach c. 

It will be noticed that in the above description the probability statements refer 
to the problems of estimation with which the statistician will be concerned in the 
future. In fact, I have repeatedly stated that the frequency of correct results will 
tend to a.* Consider now the case when a sample, E', is already drawn and the 
calculations have given, say, 0 (E') = 1 and 0 (E') -= 2. Can we say that in this 
particular case the probability of the true value of 01 falling between I and 2 is equal 
to a? 

The answer is obviously in the negative. The parameter 01 is an unknown constant 
and no probability statement concerning its value may be made, that is except for 
the hypothetical and trivial ones 

l if 1 _S 010 _s 2 
P{1 s< 06? _2} \ * . . (21) P {I1 

t 0o 2} =j0 if either 00 < 1 or 2 < 0, 
(21) 

which we have decided not to consider. 
The theoretical statistician constructing the functions Q (E) and 0 (E), having the 

above property (20), may be compared with the organizer of a game of chance in 
which the gambler has a certain range of possibilities to choose from while, whatever 

* This, of course, is subject to restriction that the X's considered will follow the probability law 
assumed. 
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he actually chooses, the probability of his winning and thus the probability of the 
bank losing has permanently the same value, 1 - a. 

The choice of the gambler on what to bet, which is beyond the control of the bank, 
corresponds to the uncontrolled possibilities of 01 having this or that value. The 
case in which the bank wins the game corresponds to the correct statement of the 
actual value of 01. In both cases the frequency of " successes " in a long series of 
future " games " is approximately known. On the other hand, if the owner of the 
bank, say, in the case of roulette, knows that in a particular game the ball has stopped 
at the sector No. 1, this information does not help him in any way to guess how the 
gamblers have betted. Similarly, once the sample E' is drawn and the values of 
0 (E') 0 and (E') determined, the calculus of probability adopted here is helpless to 
provide answer to the question of what is the true value of 01. 

(b) Solution of the Problem of Confidence Intervals 

In order to find the solution of the problem of confidence intervals, let us suppose 
that it is already solved and that 0 (E) and 0 (E) are functions determined and single 
valued in the whole sample space, W, and such that the equality (20) holds good 
whatever the true values of the parameters 01, ,.. . . . It will be convenient to 
interpret the situation geometrically. For this purpose we shall need to consider 
the space, G, of n + 1 dimensions which we shall call the general space. The points 
in this space will be determined by n + 1 coordinates xI, x2, . . . xn, 01, the first n of 
which are the particular values of the random variables (4) and thus determine the 
position of a sample point, E, in the n-dimensional space W, and the last coordinate 
01 is one of the possible values of the parameter 01 in the probability lawp (E I o... o,) 
which we desire to estimate. 

Consequently, if we consider any hyperplane, G (01) in G corresponding to the 

equation 01 = const., this may be interpreted as an image of the sample space W. 
We notice also that to any point E in the sample space W there will correspond in G 
a straight line, say L (E), parallel to the axis O06. If xI', x2' . . . x' are the co- 
ordinates of E', then the line L (E') will correspond to the equations xi = xi' for 
i = 1, 2, ... n. 

Consider now the functions 0 (E) and 0 (E). On each line L (E), they will 
determine two points, say B (E) and C (E) with coordinates 

x, x2... x,, 0 (E) . .. .... .. . (22) 
and 

XL, X2... Xn, (E) . . .. . . . .. . . (23) 

respectively, where xl, x2 ... x are the coordinates of the sample point E. The 
interval between B (E) and C (E) will be the image of the confidence interval 8 (E) 
corresponding to the sample point E. If we fix a value of 01 - 01' and a sample 
point E', then the hyperplane G (01') may cut or may not cut the confidence interval 
8 (E'). If G (0,') does cut 8 (E'), let a (01', E') denote the point of intersection. 
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The position is illustrated in fig. 1, in which, however, only three axes of co- 
ordinates are drawn, Ox1, Oxn, and 001. The line L (E') is represented by a dotted 
vertical line and the confidence interval 8 (E') by a continuous section of this line, 
which is thicker above and thinner below the point a (0'1, E') of its intersection with' 
the hyperplane G (01'). The confidence interval 8 (E") corresponding to another 

sample point, E", is not cut by G (01') and is situated entirely above this hyperplane. 
Now denote by A (01') the set of all points a (0'1, E) in G (0'1) in which this 

hyperplane cuts one or the other of the confidence intervals 8 (E), corresponding to 

any sample point. It is easily seen that the coordinate 01 of any point belonging to 
A (0'1) is equal to 0'1 and that the remaining 
coordinates xl, x, . . . x satisfy the inequalities IL(E") 

0(E) O'1 0 (E). . (24) 0 ,L(E) SE 

In many particular problems it is found that I 
E 

the set of points A (01) thus defined is filling C(El 

up a region. Because of this A ('1) will be v1) \ 
called the region of acceptance corresponding T B 
to the fixed value of 01 = . 0, . 

It may not seem obvious that the region of .. | 

acceptance A (01) as defined above must exist / 
(contain points) for any value of 01. In fact, O 6L(E) LE 
it may seem possible that for certain values of 
01 the hyperplane G (01) may not cut any of io 
the intervals 8 (E). It will, however, be seen 
below that this is impossible. 

As mentioned above, the coordinates xl, 
x2,... x, of any sample point E determine in FIG. I-The general space G. 
the space G the straight line L (E) parallel to 
the axis of 01. If this line crosses the hyperplane G (01) in a point belonging to 
A (01) it will be convenient to say that E falls within A (01). 

If for a given sample point E the lower and the upper estimates satisfy the 
inequalities 0 (E) : 0O' c 0 (E), where 0', is any value of 01, then it will be con- 
venient to describe the situation by saying that the confidence interval 8 (E) covers 
0'1. This will be denoted by 8 (E) CO'1. 

The conception and properties of the regions of acceptance are exceedingly 
important from the point of view of the theory given below. We shall therefore 
discuss them in detail proving separately a few propositions, however simple they 
may seem to be. 

Proposition I-Whenever the sample point E falls within the region of acceptance 
A (0',), corresponding to any fixed value O'% of 01, then the corresponding confidence 
interval 8 (E) must cover 0'. 

Proof-This proposition is a direct consequence of the definition of the region of 
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acceptance. Suppose it is not true. Then there must be at least one sample point, 
say E', which falls within A (0'9) and such that either 0 (E') c 0 (E') < 0'1 or 
0'Q < 0 (E') c 0 (E'). Comparing these inequalities with (24) which serve as a 
definition of the region of acceptance A (0'1), we see that E' could not fall within 
A (0'1), which proves the Proposition I. 

Proposition II-If a confidence interval 8 (E") corresponding to a sample point 
E" covers a value O'1 of 01, then the sample point E" must fall within A (0'1). 

Proof-If a (E") covers O'Q, then it follows that 0 (E") c 0'Q c 0 (E"). Com- 
paring these inequalities with (24) defining the region A (90'), we see that E" must 
fall within A (0'1). 

If we agree to denote generally by {BsA} the words " B belongs to A " or " B is 
an element of A ", then we may sum up the above two propositions by writing the 
identity 

{EeA (0'1)} ({ (E) C0'1}- _0 (E) 5 0'1 c 0 (E)}, . . (25) 

meaning that the event consisting in the sample point E falling within the region of 
acceptance A (0',) is equivalent to the other event which consists in Of' being covered 
by 8 (E). 

Corollary I-It follows from the Proposition I and II that whatever may be the 
true values O',, 0' . . . 0'. of the 0's, the probability of any fixed value 0"9 of 01 
being covered by 8 (E) is identical with the probability of the sample point E falling 
within A (0",). 

P {8 (E) COj 1 0', , 0'} = P {0 (E) 0" 1 < 0 (E)E 0' , 0'2... 0'1 

- P{E.A (0",) ', , '2, ...' 0'}. (26) 

Proposition III-If the functions 0 (E) and 0 (E) are so determined that whatever 
may be the true values of 01, 0, ... 01, the probability, P, of the true value of 01 

being covered by the interval 8 (E) extending from 0 (E) to 0 (E) is always equal to 
a fixed number o, then the region of acceptance A (0',) corresponding to any fixed 
value 0', of 0, must have the property that the probability 

P {EzA (0')1 ,0', 0, ,. 0} - - a, ....... (27) 

whatever may be the values of the parameters 02 , 03,... 01. 

Proof-Assume that 0'9 happens to be the true value of 01 and denote generally 
by O'i the true value of i0, for i = 2, 3,... 1. The probability P, as defined in 
conditions of the Proposition III, may be expressed by means of the formula 

P = P{_ (E) c 0', c 0 (E) ',, 0'2, .. '. 0 ..... (28) 

Owing to (26), which holds good for any 0',, 0'2,... e0', we may write also 

P - P {EAA (0'1,) 0'1, 0',... ',. ........ (29) 
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If P is permanently equal to o, then P {EeA (0') 1O'l, O'2,. . 0',} must be also 

equal to ca, whatever 0'1, ' . . . '. , which proves the proposition. 
Corollary II-It follows from the Proposition III that whatever the value 6'i of 

01, the region of acceptance A (0',) could not be empty. In fact, if for any value 
0', the region A (01') as defined above did not contain any points at all, then the 
probability P{EsA (0'1) j0', .. . 0'} would be zero, which would contradict the 
Proposition III. 

Proposition III describes the fundamental property of any single region of 
acceptance A (01) taken separately. We shall now prove three propositions con- 
cerning the whole set of the regions A (01) corresponding to all possible values of 01. 

Proposition IV-TIf the functions 0 (E) and 0 (E) 2: 0 (E) are single valued and 
determined for any sample point E, then whatever the sample point E', there will 
exist at least one value of 01, say 0'l, such that the point E' will fall within A (0',). 

Proof-Consider the values of 0 (E) and 0 (E) corresponding to the point E' and 
let 0', be any value of 01 satisfying the condition 0 (E') s 0'f 6 0 (E'). Com- 
paring these inequalities with (24), we see that E' must fall within A (0'"), which 
proves the proposition. 

Proposition V-If a sample point E' falls within the regions of acceptance A (0',) 
and A (0",) corresponding to O', and 0", > 0', respectively, then it will also fall 
within the region of acceptance A (0"',) corresponding to any 0"'" such that 
O1f < 0 I < 

f 
1. 

Proof-If the sample point E' falls within A (0') and A (0"1) then, owing to (24), 
it follows that 

0 (E') s O', < 0", 
f 0 (E'). ........ (30) 

Accordingly, whatever 0"', such that O', < 0"'i < 0",, it follows that 

0 (E') < "', < 0 (E'), ........ (31) 

which shows that E' falls within A (0"'). 
Proposition VI-If a sample point E' falls within any of the regions A (0,) for 

0'K < 0, < 0", where O', and 0", are fixed numbers, then it must also fall within 
A (0',) and A (0",). 

Proof-Suppose that the proposition is not true and that, for example, E' does not 
fall within A (0',). Then it follows that 

0', <0 (E') ............ (32) 

Let O"'" be a number exceeding 0', but smaller than either 0 (E') and 0", so that 
0' < 0"' < 6" and 0"' < 0 (E'). It follows from the definition (24) of A (01) 
that E' does not fall within A (0"'), contrary to the assumption that for any 01 such 
that 0'1 < 01 < 0", the point E' falls within A (0,). Similarly it is possible to 
prove that E' must fall within A (0"1). 
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The four propositions III, IV, V, and VI describe the necessary conditions which 
must be satisfied by the regions of acceptance A (01), either separately by each of 
them or collectively, if the functions 0 (E) and 0 (E) are determined and single 
valued in the whole sample space W and if the equation (20) holds good for any 
value of 01; that is to say when they determine the confidence intervals required. 

We shall now prove the reciprocal proposition, showing that if it is possible to select 
on each hyperplane G (01) a region A (01) having the properties as described in the 
conclusions of the propositions III to VI, then the system of these regions may be 
used to define the functions 0 (E) c 0 (E) which will be determined and single 
valued at any sample point E; further, their system will have the property that for 
any value 01? of 01 the equality (20) will hold good, whatever the values of the other 
parameters ,0, , ... 01. 

Suppose, therefore, that on each hyperplane G (01) there is defined a region, 
A' (01), such that 

(i) P {EsA' (01) 0 1} = a, whatever the values of 02, 03, ... 01. 

(ii) Whatever the sample point E, there exists at least one value O', of 01 such that 
E falls within A' (0'1). 

(iii) If a sample point E falls within A' (0',) and A' (0"1) where 0', < 0", then, 
whatever 0"', such that O'1 < 0"', < 0"1, the point E falls within A' (0"'"). 

(iv) If a sample point E falls within A' (01) for any 01 satisfying the inequalities 
0', < 01 < 60", then it falls also within A' (0'1) and A' (0",). 

Denote by 0' (E) the lower and by 0' (E) the upper bound of values of 01 for which 
a fixed sample point E falls within A' (01). 

Proposition VII-If the regions A' (01) satisfy the conditions (i), (ii), (iii), and (iv), 
then the functions 0' (E) and 0' (E) are the lower and the upper confidence limits of 
01, i.e., such that 

(a) they are determined and single valued at any point E and O' (E) c O' (E), 
(b) whatever the true value ,01 of 01, the probability 

P {0' (E) c 01? 0' (E) 10} =, ...... (33) 

independently of the values of the other parameters 02, 03, ... 01. 

Proof-The property (a) of functions 0' (E) and 0' (E) follows directly from the 
condition (ii) and the definition of O' (E) and O' (E). We may notice, however, 
that 0' (E) and 0' (E) are not necessarily finite. 

To prove the property (b), it will be sufficient to show that whatever 01? 

P {0' (E) c 010 c 0' (E)1 0?} = P {EsA' (i0?) 1 }, .... (34) 

and then refer to the condition (i). 
For this purpose we notice first that owing to the definition of O' (E) and 0' (E), 

whenever E falls within A' (,01), then it must follow that 0' (E) c 01? 0' (E). 
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It remains to show that inversely, if for any point E, 0' (E) 61 0 ' (E), then 
this point must fall within A' (01?). 

Suppose for a moment that this is not true and that there is a sample point E' not 
falling within A' (01?) and such that 0' (E') ' 01? ' 0' (E'). 

It is easily seen that in such a case, either 0' (E') -- 0 or 010 = ' (E') or both, if 
0' (E') 0 ' (E'). In fact, if 0' (E') < 010 < 6' (E'), then 0' (E') and 0' (E'), 
being the lower and the upper bounds of the values of 01 for which E' falls within 
A' (01), there would exist two values of 01, say 0'6 and 0",, such that E' is falling 
within A' (0'1) and A' (0"1) and 

0' (E') c 0'Q < 01? < 0" : 0' (E'). . .. (35) 

It would then follow from the condition (iii) that E' falls within A' (01?), contrary 
to the assumption. Therefore, we cannot assume that 0' (E') < 60? < 0' (E'). 

Now it is easy to see that if 

0' () 0 (E''))' (E ....... .. (36) 

then E' must fall within A' (01?). In fact, 0' (E') and 0' (E') are respectively the 
lower and the upper bounds of the values of 01 for which E' falls within A' (01). 
If they are both equal to 01,, then 01? must be the only value of 01 for which E' falls 
within A' (01). 

It remains to consider only such cases where either 0' (E') = 10 < 0' (E') or 
0' (E') < 0? = 0' (E'). In both cases 0' (E') < 0' (E'). We notice first that, 
whatever 01, within the limits 

0' (E') < 01 < 0' (E') ......... .. (37) 

the sample point E' must fall within A' (01). Otherwise either 0' (E') and O' (E') 
would not be respectively the lower and the upper bounds of values of 01 for which 
E' falls within A' (01), or else the condition (iii) would not be satisfied. Now it 
follows from (iv) that E' must fall both within A' (0 ') and A' (0 ") where 0' = 0 ' (E') 
and 0"' = 0' (E') and therefore within A' (01?), which completes the proof of the 
Proposition VII. 

Thus the problem of constructing the system of confidence intervals is equivalent 
to that of selecting on each hyperplane, G (01), regions A ( 1) satisfying the conditions 
(i)-(iv). Obviously, these regions will have the property of being regions of 
acceptance. 

Before going any further with the theory and discussing the problem of how to 
choose the most appropriate system of the regions of acceptance, we shall illustrate 
the results already reached on two examples. These have been selected so as to reduce 
to a minimum the technical difficulties in carrying out the necessary calculations 
which might easily conceal the essential points of the theory to be illustrated. It is 
obvious that under the circumstances the examples could hardly fail to be somewhat 
artificial. However, at the end of the paper the reader will find examples having 
direct practical importance. 
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(c) Example I 

Consider first the case where the probability law of the random variables con- 
sidered depends only upon one unknown parameter 0, which it is desired to estimate. 
Assume further, for simplicity, that the number of random variables, the particular 
values of which may be given by observation is n = 2 and that their elementary 
probability law p (x,, xO 0) is known to be 

p (, X210) 0-2 for 0< x1, 2 < 0 
and . (38) 

p (x1, x2 0) = 0 for any other system of values of x and x2 

!~~~/ ~The value of 0 is unknown and it is desired 
to construct a system of confidence intervals 

axj^ ]^^^\ / \^' ~ for its estimation. 
I, ~ '~~.- \ The sample space W is now of two dimen- 

- A-^^^^__ \ ssions, i.e., a plane. As the coordinates of the 
sample point must be positive, we may con- 

../ . | sider that W is limited by the conditions 
.....0 / O < x] and 0 < x. Denote by W+ (0) the 

part of W in which p (xl, x210) is positive. 

~~| 
"'6 ~~ \ Obviously W+ (0) is a square with its side 

equal to 0. 
e| 6'~ // ./% Fig. 2 represents the general space G with 

two planes G (0) on which the correspond- 
-O^s.~~ R_ > ing squares W+ (0) are marked. 

According to Proposition VII, the con- 
struction of the system of confidence intervals 
will be completed if we manage to select on 
each of the planes G (0) a region of accept- 
ance A (0) satisfying (i)-(iv). Now it is easily 

FIG. 2. seen that it is possible to suggest many systems 
of regions, some of which will and some of 

which will not satisfy all these conditions. We shall consider three systems, which 
will be denoted by SI, S2, and S3, and the particular regions forming these systems 
by AI (0), A2 (0), and A3 (0) respectively. 

(1) Fix any value of 0 and let the region of acceptance A1 (0) be defined by the 
inequalities 

0 < xi < 0 for i= 1,2, ......... (39) 

where P is a positive number less than unity and so selected as to satisfy the condition 

P {EsAI (0)10} s . . . . . . . (40) 
Obviously 

P {EA, (0)10}= (1 - )2, .. . . . .... (41) 
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and it follows that 
(- = 1 - o. . . ........... . (42) 

The regions A1 (0) defined by (39) will form the system S1. If 3 is selected as 
indicated in (42), they will satisfy the condition (i). Now it is easy to see that they 
will not satisfy the condition (ii) and that therefore the system S1 does not present a 
suitable choice of regions of acceptance which would determine the confidence 
intervals. 

To see this, take any sample point E' with coordinates x',, x'2, and see whether it 
is always possible to find a value of 0 -= ', such that E' will fall within A1 (0'). 
Owing to (39), such a value 0' should satisfy the inequalities 

P0' < x', x'2 < 0', . ........ (43) 

or, if I and L denote respectively the smaller and the greater of the numbers x'1 and 
x'2, then 

L < 0' < l-1. .. .......... (44) 

This shows that the value 0' such that E' falls within A1 (O'1) can be found only if 
L < 1f-1, or pL < 1. Now if 1= x', < x'2 L, then these inequalities lead to the 
condition x'2 < x',. If, on the contrary, 1= x'2 - x'l =L, then x'1 < x'2. 
Accordingly, none of the sample points E" with coordinates x", and x"2 such that 
either 

0 < x"2 < 'X"1 or 0 < x"' < x" . . . .. (45) 

will fall within any of the regions A1 (0) forming th;e system S, and it follows that 
they could not serve as regions of acceptance. Fig. 3 (i) illustrates the situation. 
Here cross-hatched areas correspond to (45). 

(2) The second system S2 of regions A2 (0) we shall consider might be suggested 
by intuition. It follows from the definition of the probability law p (x1, x2 (0) that 
xi and x2 are mutually independent and that they vary from zero to 0. Under these 
circumstances, the mean x = -1 (x1 + x2) will vary symmetrically about 0 and there- 
fore 2x = x + 2 - T could be considered as an estimate of 0 itself. 

Denote by A2 (0) a region in G (0) defined by the inequalities 

0 

- A X1l + X2 +5 0-t A, ........ (46) 

where A is so selected as to have P {EsA2 (0)10} = . Simple calculations give 

P {EA2 (0)l0} 1- ) --, ....... (47) 

and it follows that A 0 (1 - oa). Substituting this value in (46), we get 

0(1- (1 -- ) ) xl + x2 0(1 + (1 - )) ..... (48) 

as the final definition of the region A2 (0). Fig. 3 (ii) shows the form of the region. 
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It is easily seen that the system S, of regions thus defined satisfies all the conditions 

(i)-(iv) . 
For example, in order to check the condition (ii), we may notice that whatever 

the positive numbers x'1 and x'2, the value 

o i AI1 + X12 ** (49) , _ 1 -- X 2+ .. . . . . . . . (49) 

satisfies the inequalities (48) which means that the sample point E' with coordinates 

x'i and x'2 falls within A2 (0'). 
The other conditions (iii) and (iv) are checked equally easily. Thus the regions 

A2 (0) may be considered as regions of acceptance. Let us now see how they 
determine the lower and the upper confidence limits of 0, say 02 (E) and 02 (E). 
According to the definition, 02 (E) is the lower bound of the values 0' of 0 for which 
the sample point E falls within A2 (0'). If xl and x2 are the coordinates of E, then 
it follows from (48) that 0' could not be smaller than, but may be as small as, 
(xl + x2) (1 + (1 - o~))-1, which means that 

92 (E) x1 )-+ 
2 (50) 

Similarly we get from (48) that O' may be as large as, but could not exceed, 
(x1 + x) (1 - (1 - c)i)-1, which shows that 

_- X, + X2(51) 
02 (E) 1 - - * v ...... (51) 

Formerly we used the symbol 8 (E) to denote the confidence interval extending 
from 0 (E) to 0 (E). Now we shall use the same symbol to denote the length of the 
confidence interval. We shall have from (50) and (51), say 

8, (E) - 
0, (E) ( - (x + x) 2) ~ . . . (52) 

Now we may use (50) and (51) for estimating 0. If the observations provided the 
values of xl and x,, say x', and x'2, we should state that 

x 1 + XI 2 xtI + X 2 

l+(l .. - . -- '(53 

Whatever value of a may be fixed in advance, such that 0 < a < 1, we may be certain 
that the frequency of the statement in the form (53) being correct will, in the long 
run, approach a. 

The accuracy of estimation corresponding to a fixed value of oc may be measured 

by the lengths of the confidence intervals (52). 
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(3) The regions A3 (0) forming the third set, S3, will be defined by the inequalities 

qO L L < 0 . ........... . (54) 

where L denotes again the larger of the two numbers xl and x2, and q a number 
between zero and unity to be determined so as to satisfy the condition (i) 

P {EsA3 (0)10} 
- 

P{qO 5 L < 00} ---- . .... . (55) 

Fig. 3 (iii) shows the relationship between W+ (0) and A3 (0) which lies outside 
the square adjoining the origin of coordinates with its side equal to qO. 

(ii) 

FIG. 3. 

It may be useful to deduce the probability law of L for a more general case, when 
the number n of the x's considered is arbitrary, all of them being independent and 
following the same probability law 

p (xi) - 1/0 

p (xi) -= 

for 0 < xi< 

elsewhere f 
. ...... . (56) 

For this purpose we notice that for any positive constant L' c 0 

n L' LL n 

P{L < L'|0}= il P (xi) dx, - )" i 0 I \ 9 (57) 

Differentiating this expression with regard to L', we may obtain the elementary 
probability law of L. The probability in the left-hand side of (55) may be obtained 
directly from (57) and we have, for n = 2, 

P {q0o L < 010} 1f - q2 . . ...... (58) 
Hence 

q= (1 -a). ............ (59) 

Thus the inequality (54) defining the region A3 (0) becomes 

0(1--a) L< 0 ........... (60) 

302 
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It is easily seen that the system S3 satisfies the conditions (i)-(iv) and therefore may 
be considered as a system of regions of acceptance defining the lower and the upper 
confidence limits of 0 and hence the confidence intervals. In order to obtain the 
lower limit, 0 (E), fix any sample point E and consider (54). It is easily seen that if 
L is the larger of the coordinates of E, then the lower bound of the 8's for which E 
falls within A3 (0) is given by 

03 (E) - L. ............. (61) 

On the other hand, it is seen also from (54) that the upper bound of the same 0's is 
obtained from qO (E) = L, thus 

03 (E) = L (1 -- . .......... (62) 

It follows that the length of the confidence interval is, say, 

83 (E) 
1 (1. . . ...... (63) 

(1- a). 

The formulae (61) and (62) could be used to estimate 0, and in applying them we 
shall be correct, in the long run, in 100c per cent. of all cases. 

It is interesting to compare the two systems of confidence intervals (50) and (51), 
(61) and (62). For this purpose let us choose c - 3. The statements concerning 
the value of 0 using the two confidence intervals will be 

X cS 0 5 43, 82 (E) = 3, .. ... . (64) 
and 

L 0 c 2L, 83 (E) -L, .... ..... (65) 

where x is the arithmetic mean of x] and x2. Assume that in two different cases, 
A and B, the observations gave x'1 x' -= 1 and x" 0. 01, x"2 1 9 respectively. 
Then using (64) we shall get, in both cases, 

3 c 3 c 4, . .......... . . (66) 
while using (65) 

1 c 0 c 2 and 1.9 0 5 3-8 . (67) 

in cases A and B respectively. 
The two pairs of inequalities do not agree and a superficial examination may lead 

to the conclusion that there is some contradiction in the theory. 
It is perhaps not so bad with the sample A, for which the two confidence intervals 

(66) and (67) partly overlap but do not cover each other. But in the case of the 
sample B the interval (67) is entirely included within (66). Are these intervals 

equally reliable ? 
Before this question could be answered, it must be made more precise. What is 

exactly meant by the words " equally reliable ", and do they refer to the numerically 
defined intervals, viz., (4/3, 4) and (1 9, 3 8), or to the whole systems of intervals as 
given by (64) and (65) ? 
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The theory of confidence intervals as explained in preceding pages does give reasons 
for considering the systems (64) and (65) as "equally reliable". By this is meant 
that (1) if a random experiment determining the values of x1 and x2 is performed 
many times and (2) if the random variables xl and x2 follow the probability law (38) 
where the value of 0 > 0 in each experiment may be the same or different-without 
any limitation whatsoever-then the frequency of cases where the intervals (64) and 

(65) calculated for each experiment would actually cover the true value of 0 will be, 
in the long run, the same, namely, a - 3/4. 

On the other hand, if the words " equally reliable " in the above question refer 
to the numerical intervals (4/3, 4) and (1 9, 3 8), then the theory of confidence 
intervals does not give any reasons for judging them equally reliable or not. 

It may be useful to illustrate the above statements with a simple sampling experi- 
ment which the reader may wish to perform. 

Imagine that in a period of time the statistician is faced 400 times with the 

problem of estimating 0. The true value of 0 may be in all those 400 cases the same, 
or it may vary from case to case in an absolutely arbitrary manner. Assume, for 
instance, that in a set of 400 random experiments the distribution of 0 is as set up in 
the following table (or any other): 

True 0 Frequency 
1 155 
2 37 

10 8 
20 10 
30 190 

Next take TIPPETT'S random sample tables (1927) and consider each of the numbers 

composed of four digits as a decimal fraction. Write (lown from the table 400 couples 
of figures. The figures of the first 155 couples consider as particular values of x1 
and x2 determined by 155 experiments with true 0 = 1. The figures in the next 
37 couples multiply by 2 and consider the products as forming the results of 37 
further experiments where 0 = 2. The figures in the next 8 couples should be 

multiplied by 10, those in the next 10 couples by 20, and finally those in the remaining 
190 couples by 30. 

Substitute the obtained results in formulae (64) and (65) and see in each case 
whether the calculated interval covers the true value of 0, i.e., 1, 2, 10, 20, or 30, 
whichever the case may be. It will be seen that the relative frequency of cases where 
the confidence intervals either calculated from (64) or from (65) will actually cover 
the true 0 will be approximately equal to a = 0 75. Of course, there will be no 

perfect agreement with this figure, but it would be extremely surprising if the observed 

frequency fell outside the limits of 0* 69 and 0 81. This result is entirely independent 
of the distribution of true 0's, and the above table may be altered as desired, without 

any limitation. 
If there is little to choose between the two systems of confidence intervals (50) and 
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(51), and (62) and (63) from the point of view of probability of correct statements, 
there are other aspects which easily determine the choice. In problems of estimation 
by interval, it is natural to try to get as narrow confidence intervals as possible. 
Comparing again (66) and (67), we find that the latter interval is considerably 
shorter than the former. It is easy to see that this is a general rule. In fact, what- 
ever the mean, x, if both x1 and x2 are necessarily positive, then 

x _ L < 2x, . .......... .. *. (68) 

and it follows from (64) and (65) that 

(3/8) a2 (E) < (E) < (3/4) 2 (E), .....(69) 

showing that the length of the confidence interval determined by (62) and (63) is 

always less than 3/4 of that determined by (50) and (51). It is obvious, therefore, that 
the confidence intervals defined by (62) and (63) compared to the other system have 
definite advantages. These advantages, however, are independent of the conception 
of probability. 

Using again the analogy with the games of chance, we may say that while the rules 
of the two kinds of game, as described by the two pairs of inequalities (50) and (51), 
(62) and (63), assure the same probability of winning, the sums which could be won 
in each case are different, and this is the reason why we prefer the " game " (62) and 

(63).* 

(d) Example II 

Let us now consider an example in which the probability law of the random 
variables considered depends upon two parameters 01 and 0, our problem being to 
estimate the value of 01. In order to remove all technical difficulties which might 
screen the essential points of the theory, we shall again consider a simple case where 
the number of the random variables is n = 2. Suppose that it is known for certain 
that 

P (Xl X2|01, 02) = - - 6 - 02 + 3 o02 x for 0 < x1, x2 and x1 - x2 - 0j 
p (X,, X2| a, e) for any other system of values of the x's. (70) 

p (xl, x2101, 02) 
- 0 for any other system of values of the x's. j 

As to the parameters 1 and 02, it is known only that 01 > 0 and - 1 < 0 0 02 2. 

The sample space W is limited to the first quadrant of the plane of the x's, and its 

positive part, W+ (01), corresponding to any fixed value of 01, is formed by a triangle 
as suggested in fig. 4. 

In order to see at once the difficulties introduced by the fact that the probability 
law (70) depends upon two parameters, while we are interested in one only, let us 

try to solve the problem of confidence intervals by a guess. In Example I, the more 

* This point will be discussed later. See pp. 370 et seq. 
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satisfactory confidence intervals were determined by regions of acceptance belonging 
to S3, having their internal boundary similar to that of the external, the latter being 
also the external boundary of W+ (0). 

As the conditions of the problem in Example II present many features similar to 
those in Example I, let us try to use as regions of acceptance the regions A1 (01), 
constructed in the same manner as the more successful regions of acceptance in 

Example I. 
The region A1 (01) will be limited by the axes of coordinates, by the straight line 

x1 + x2 : 01 and by a parallel to that line, corresponding to the equation 
xI + x2 = a 01, where a < 1 will be a constant which we shall try to determine so as 
to satisfy the condition (i). 

0.I 

O- X- ,-B a, 3, 

FIG. 4-B C represents W4 (x',); D E represents w (x'1) 
We have 

P {EEA1 (01)101, 02} P {a01 : xl + x2 : l 0110,1 02} 
a9l 9 a9 -x 

-= I- dxl P1 p (x, xl 01,02) dx2 
o Jo 

-1 - a2 + -a2 (1 - a) 012 ..(71) 

Now it is easy to see that the regions A1 (01) cannot be used as regions of acceptance. 
In fact, it follows from the proposition III that the regions A1 (01) could only be 

used as regions of acceptance if, for any fixed value of 01 =- 0', the probability 
P {EsA1 (0'1) 1 '1, 02} were equal to a irrespective of what is the true value of 02. Looking 
at the last line of (71), we see that if a and 01 =- 0' are fixed, the probability 
P {EeA1 (0'1) 1'1,02} still depends on 02 and that, according to the value of this 
parameter, it may be smaller or larger than the prescribed a. 

We see, therefore, that in cases where the probability law of the x's depends upon 
some more parameters, say 0 2, 3,. . . 0, besides 01, which it is desired to estimate, 
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the choice of the regions of acceptance must be limited to those, A (01), for which 
the value of the probability P {EsA ( 1) 1, 02, ... 0 }Oj= c and is independent of 
the values of the parameters 02 .... 01. 

Regions of this type which have been considered elsewhere (NEYMAN and PEARSON, 

1933) are called similar to the sample space with regard to the parameters 02, 

3, ... 0t, and of size a. If certain limiting conditions are satisfied by the elementary 
probability law of the X's, it is known also how to construct the most general similar 
region. Therefore, under these conditions, we are able to select the regions of 
acceptance, not only satisfying the condition (i) but also some other conditions con- 
cerning the relative width of the confidence intervals which will be discussed below. 

The conditions under which we are able to construct the most general region 
similar to the sample space with regard to the parameter 02 are not satisfied by the 
probability law (70). Therefore, we are not able to construct any region similar to 
W with regard to 02. However, a few theoretical remarks which follow allow the 
construction of a rather broad family, say F, of such regions. It is just possible that 
an advance of our knowledge on the subject will show that the only regions similar 
to W with regard to 02 are those belonging to F. 

(e) Family of Similar Regions Based on a Sufficient System of Statistics 

Denote by p (El 01, 02, ... 0) the probability law of random variables X1, X2, . . . 
X, depending on I parameters 01, 02, ... 0, by W (T, T2, ... T,), or W (T) for 

short, the locus of points in the sample space W where some statistics* T1, T2, .. . T 
have certain constant values and finally by w (T1, T2, . . . T,), or w (T), a part of 
W (T) which may be defined in one way or another. We shall assume that the T's 

possess continuous partial derivatives with regard to the X's. We may now prove the 

following proposition. 

Proposition VIII-If the statistics T1, T2, ... T, form a sufficient set with regard 
to the parameters 02, 03 ... 0,, then the probability of the sample point E falling 
within w (T) calculated under the assumption that it has fallen within W (T) or 

P {Esw (T)[Es W (T)} ..........(72) 

is independent of 02, 0, ... 0 and is a function of 01 only. 
In proving this proposition, we shall start by expressing its conditions analytically. 

The condition that the statistics T1, T2, . . . T, form a sufficient system with regard 
to 02 03, ... 06 is equivalent to (i) that T1, T2, . T are algebraically independent 
and (ii) that the elementary probability law of the X's can be presented in the form 
of the product 

p (El01, 02, ... ,) -p (T1, T2, . .. Ts, 0, ,, ... ,0)f(E,01), . . (73) 

* For the definitions of the terms used in this section, see NEYMAN and PEARSON (1936, b). 
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where p (T1, T2, ...T,Ij 1, 0, .. ..0) means the elementary probability law of 
the T's andf (E 061) is a function of the x's and possibly of 01, but quite independent 
of 02, 03,... 01.* The word " equivalent" means that whenever T1, . .. T, form 
a sufficient set then both (i) and (ii) must hold good and that, inversely, whenever 
(i) and (ii) are true, then the statistics T1 ... Ts must form a sufficient set. 

Introduce a new system of n-variables T, T2, . . . TS, t, , ... t,, including the 
statistics T,, which form the sufficient set, and transforming the original space W 
of the x's into another n-dimensional space W'. As the T's are algebraically in- 
dependent, it is always possible to arrange so as to have a one to one correspondence 
between W and W', except perhaps for a set of points of measure zero. Denoting 
by E' the point in W' and using (73), we may write the probability law of the new 
variables in the form 

p (E'I 01, 02, . . . 0) p (T1, T2,... . T, 0,... 0) fi (E'j 01), . . (74) 

where again f (E' 01) does not depend upon 02, 03 ... 01. Dividing both sides of 
(74) by p (T, ... T| 01, 0, ... .0), we shall obtain the relative probability law of 
ts+1, t+2, . t , given T1, T2, .. T,, 

p (tS+,1 tS- 2, . . tnl1, .. . 0,, T1, ... Ts) -=f (E 01) .... (75) 

Now (72) represents the probability of E falling within w (T), calculated on the 
assumption that it fell on the hypersurface W (T). The image of W (T) in W' will 
be a prime, say W'(T), defined by T = const., i = 1, 2,... s, and the image of 
w (T) a part of W' (T), which we shall denote by w' (T). The position of the point 
E' on W' (T) corresponding to any fixed system of values of T1, T2, ... Ts is deter- 
mined by the coordinates ts+l, t, 2) ... tn, and it follows that the probability in (72) 
is equal to the integral of (75) with regard to ts4., ts+2, ... t extending over the 
region w' (T). 

As (75) is independent of 02, 03, ... 0,, so must be its integral taken over w' (T), 

P {Erw (T) IErW (T)} - P {E'w' (T) E'sW' (T)} 

= .|.. | p (ts+, .... tn|Ti, T2,.T) dt. .) . dtn 
w' (T) 

='i[ f1 (E'101) dts+1dts+2 ... dtn . . (76) 
w'(T) 

This completes the proof of the proposition VIII. We may remark that for any 
fixed value of 01 and a fixed system of T1, T2, ... . T for which p (T1, . . . T) > 0 
the region w (T) may be so selected as to ascribe to (76) any value between zero and 

unity which may be given in advance. It is also obvious that this could be done in 
an infinity of ways. 

* This proposition has been stated without proof by NEYMAN and PEARSON (1936, b), p. 121 It nmay 
be easily proved following the lines indicated by NEYMAN (1935, a), 
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Proposition IX-If T1, T2, . . . T, form a sufficient set of statistics with regard to 
02, 03, ... 0 and if for any system of values of the T's the region w (T) is so selected 

that, for a fixed value of 01 0' , 

P {Eew (T) EsW (T)} - ........ (77) 

where 0 < a < 1, then, for that value 01 =0 '1 the n-dimensional region w which 
would be obtained by combining together the regions w (T) corresponding to all 

possible systems of values of T,, T2, . .. T,, will be similar to the sample space W 
with regard to 02, 3, ... 06 and will have its size equal to c, so that 

P {E?wl 0'}=- , . .......... (78) 

whatever the values of 02, 03, ... . 01. 

In order to prove Proposition IX, denote by w' the image of w in W'. Obviously 
w' will be a combination of the regions w' (T) and also 

P {EEwj0'1} = P{E'w'|60'1}, ............. (79) 
and therefore 

P {ELw 0'1} - .. p (E'i 0',, 2, .. ..0) dT1 dT2 ... dt.. (80) 

Using (74) and denoting by W" the set of all possible systems of values ofT1, T2,... 
T,, we obtain further 

P {Ewl 0'} l ... pW{(Ti, T2, T ' 01, 0, ... 01) 

Jf... f(T) (E'l O') dtl+l... dt,, dTl ... dT . (81) 

Owing to (77), this equation reduces to 

P {E wi 0'} a ... w p (T1 .. T', 0'2, 0, . . 0. T) d . . . , = , (82) 

since the integral of p (T, . . . T,', l ... O.), taken over the set W" of all possible 
systems of values of the T's, must be equal to unity, whatever the values of 01, 02, 

... 06. This proves the Proposition IX. 
It follows that, whenever a system of statistics T,, T2, .. Ts sufficient with regard 

to the parameters 02, ... 01 exists, we may construct an infinity of regions w, all of 
which will be similar to the sample space W and will have the same size oc. To do so 
it is sufficient 

(a) To select on any hypersurface W (T) a region w (T) satisfying the condition 

(77). Owing to Proposition VIII, this is always possible and in an infinity 
of ways. 
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(b) To combine all the regions w (T) corresponding to all possible systems of 
values of the T's. 

The family of the regions similar to the sample space with regard to 0,,. 0.. 
which may be thus obtained may be called the family based on the sufficient system 
of statistics T1, T2, . . . T,. It is possible that in certain cases similar regions will 
exist which do not enter into such families based on sufficient systems of statistics. 

We may now go back to our Example II and see how the problem of confidence 
intervals could be solved. 

(f) Example IIa. 

Turning back to the probability law of xi and x2 as defined in (70), it is easy to 
see that x1 is a specific sufficient statistic with regard to 02. As a specific sufficient 
statistic with regard to one parameter is a particular case of a sufficient system of 
statistics, this fact, together with the Proposition IX, could be used in order to con- 
struct regions similar with regard to 02, which we require to serve us as regions of 
acceptance. 

In order to see that xl is a specific sufficient statistic with regard to 02, let us calculate 
its elementary probability law. Integrating (70) with regard to x2 between limits 
zero and 01 - x1, we easily obtain 

p (X1) = p (X1,x2, 02) (01 
- 

X1) for 0 < X1 : 01, . 
p (xl) = 0 for any other value ofx, 

It is seen that p (xl) depends both on 01 and 02 and therefore we shall denote it by 
p (x1lI002). Now we can write 

p (X1, X2101, 02) = p (Xl 01, 02)f(El0) , ...... (84) 

withf(E 01) defined as follows. For 0 < x1, x2 and xj + x2 o 0i 

f(E01) (01 - x)-1- , .......... (85) 

and at any other point f(EI 01) = 0. Asf(EI01) is independent of 02, it follows 
that xl is a specific sufficient statistic of 02. 

Using Proposition IX, we may now construct regions which, for a fixed value of 
01, will be similar to W with regard to 02. For this purpose we have to fix 016 = 0' 
(say) and also the value of the sufficient statistic x = x'l. Next we consider the 
locus W (x'1) where x = x' and select any part of it w (x') satisfying (77). 

The combination of w (x') corresponding to all values of x' between limits 
0 < x' c 0'1 will give us a region similar to the sample space with regard to 02. 

Now W (x'1) is a straight line parallel to the axis Ox2. In order to select its part 
w (x'), which may be represented by an interval, satisfying (77), we require the 
relative probability law of x,, given xl. Using the familiar relation 

p (l, X2) = p (x,)p (X2x), ......... (86) 
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and comparing it with (84) and (85), we find that for 0 < x, _ 01 

p (x21l0, x1) = (01 - l)1 for 0 < x2 _ - 01 -- X1 

(87) 
p (x2l01, xl) 0 for other values of x2. 

It follows that the relative probability law of x2, given xl, is positive and constant for 
0 < x2 c 01 - x1 and is zero elsewhere on the line W (xl). Therefore the con- 
dition (77) concerning the interval w (x'1)* to be one of the elements of the similar 

region w reduces to the requirement that the length ofw (x') should be in a constant 

proportion cx to the length of the interval, say W? (x'1), on W (x'1), wherep (x,2 0,, x'1) 
is positive. 

We see that a number of regions similar to the sample space with regard to 02 

could be obtained as follows. (a) Fix a value of x x' < 01 and select on the line 
W (x'1) corresponding to 

X, = X'1 and 0 < x2 1 - x'1, . . . .... (88) 

any interval w (x',), the length of which is equal to a (0 - x',). (b) Combine all 
such intervals together to form w. 

We shall select as the regions of acceptance, A, (0,), the regions constructed as 

described in (a) and (b) with an additional limitation, that the intervals w (x,) 

corresponding to different values of x1 should be similarly situated on W+ (x,). 
Thus, for any 0 < x, < 01 we shall define the interval w (x1) by the inequalities 

b (01 - x,) < 2 < (b -+ ) (01 - x), ...... (89) 

where b is any positive number not exceeding 1 -- . Combining all such intervals, 
which obviously satisfy (a), we shall obtain the region A2 (01) which we shall use as 
a region of acceptance in estimating 01. As shown in fig. 4, the region A2 (01) is 
limited by the axis Ox2, and by two straight lines x2 - b (01 - x,) and x2 = (b + a) 
(01 - x1). It is easy to check that P {EsA2(0i,)0,} --- whatever the value of 02, 

so that the condition (i) required for A2 (01) to be a region of acceptance is satisfied. 
It is easily seen that the remaining conditions (ii)-(v) are also satisfied. 

Now we may determine the confidence intervals for 01 resulting from the regions 
of acceptance A2 (01). If x'l and x'2 are the coordinates of any sample point E' 

determined by observation, we see from (89) that the lower bound of values 0'1 of 
01 for which E'eA2 (0',) is 

(E' b .......... (90) 

* It is obvious that it is not necessary that w (x) should be one single interval on W+ (x'). It 

could be formed by several such intervals subject to the condition that the sum of their lengths is 

equal to a (01 - x'), etc. 
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The upper bound of 0', is found from the same inequalities (89), namely, 

(E') =x + b ...... . (91) 

These are two estimates of 01 determining the confidence interval a (E'). The 
length of this interval for any given sample point, E, is 

a (E)b (b + ***** (92) 

and depends upon the value of b chosen. The larger b, the smaller 8 (E) and 
therefore the more accurate estimation of 01. The confidence intervals giving the 

greatest accuracy correspond to b 1 -- ct. 
We see again that after having assured that the probability of our being correct 

in statements concerning the estimated parameter is equal to c, we can proceed 
further and satisfy some requirements concerning the accuracy of these statements 
as measured by the length of the confidence intervals. 

The above two examples are simple not only because they do not present any 
technical difficulties in calculating probability laws, etc., but also because the choice 
between the systems of confidence intervals suggested is easy, e.g., if we use alter- 

natively b '= 1 - a and b" < 1 - , all the confidence intervals as determined by 
(90) and (91) corresponding to b' will be shorter than those corresponding to b". 
There is therefore no doubt as to what value of b should be chosen. 

This, however, is not always the case, and in general there are two or more systems 
of confidence intervals possible corresponding to the same confidence coefficient a, 
such that for certain sample points, E', the intervals in one system are shorter than 
those in the other, while for some other sample points, E", the reverse is true. 

This point is of some importance and I advise the reader, as a useful exercise, to 
consider a system of regions of acceptance, A3 (01), defined as follows: 

(1) for 0 < xl 1/2 01 , A (01) contains all points in which 

(1 --a) (01 - X) ( X 01 -x x 1 ....... (93) 

(2) for 1/2 01 < xi < 0 , A3 (01) contains all points in which 

0<x < a(0-- x). .......... (94) 

It is easy to see that the regions A3 (01) thus defined may serve as regions of accep- 
tance. The reader will also easily find that for all sample points of the line x, = cxx1 
the confidence intervals as defined by regions A3 (01) will be shorter than those 
defined by (90) and (91) with b = 1 - a. On the contrary, the confidence intervals 
for all sample points lying on the line x2 = qx1 with 

0< < q 1-C c ) . . .. (95) 
1 - a +- a2 
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will be greater than those defined by (90) and (91). The position is illustrated in 
fig. 5. Here it is not so clear which of the two systems of confidence intervals to 
choose. The analysis of the situation is given in the next section. 

III-ACCURACY OF CONFIDENCE INTERVALS 

(a) Shortest Systems of Confidence Intervals 

If there are possible the systems of confidence intervals, say C1 and C2, such that 
for some sample points the intervals in C1 are shorter than those in C2, while for some 
other sample points the reverse is true, the choice between C1 and C2 may be based 
on the relative frequency or on the probability of having an interval of a given length. 

If using C1 we have short confidence in- 
Xz2 tervals more frequently than when using 

0Q C2, then the system C1 will be probably 
considered as more satisfactory. 

The above statement may appeal to 
intuition, but it is obviously too vague to 

! X2~///^^ ~be used in practice. 
:^^^^^^^^>A Consider the general problem when the 

number n of the variables X which we may 
observe is arbitrary and the probability 

^///////^\ law of the X's, p (E 01,... 0,) depends on 

,,/b (,A3(B,)^^ 1 parameters 01, ... 0,, the first of which, 
01, we desire to estimate. Denote by 010 

m,- tthe unknown true value and by 0', any 
other value of the estimated parameter. o t0 0,' x'-,| Denote further by ij (E) the confidence 

FIG. 5-Shaded area represents A, (01) interval for 0 corresponding to the sample 
point E and belonging to a particular 

system Cr , (i = 1, 2. ..) of the confidence intervals established at a fixed confidence 
coefficient o. Thus we assume that, as in the above examples, we have several 
systems of confidence intervals C1, C,, ... If all of them correspond to the same 
confidence coefficient o, then all of them satisfy the condition 

P { (E) C0100o?} -, , ...... ... (96) 

stating that, whatever 010 and whatever the values of other parameters 02, ... 1 
the probability that the interval should cover the true value 01?, is equal to a. 

This is the common property of the systems of confidence intervals considered. 
Now it is obvious that whilst it is desirable that the true value of 01 = 010 should 

be covered by the confidence interval 8 (E) determined by an observed sample point 
E, it is not so with any other value of 01- =0', 01?. In fact, the presence of the 
value 0'1 ? 0Q? within an interval 8 (E) containing 01? is unnecessary and may be 

370 



STATISTICAL ESTIMATION 

interpreted as an indication that this interval is " too broad ". It is clearly impossible 
to avoid altogether covering the values of 01 which are not true. But we may try 
to diminish the frequency of 8 (E) covering any value 0'1 \ 01? to a minimum. 
This leads us to the following definition of the shortest system of confidence intervals. 

If a system, Co, of confidence intervals ,o (E) has the property that whatever any 
other system C of intervals a (E) corresponding to the same confidence coefficient 
a, whatever the true value of 01 010 and whatever any other value 0', f 01? 

P {80 (E) CG0'1l010} 5 P {8 (E) C0'i110?}, ...... (97) 

then the system Co will be called the shortest system of confidence intervals. 
Thejustification of this terminology is clear. When using Co, the true value of 

01 = 0? will be covered with the prescribed frequency o and any other value 
0'61 010, with a frequency not exceeding that corresponding to any other system, 
C corresponding to the same confidence coefficient oc. This could be described by 
saying that the intervals 80 (E) are not unnecessarily broad. 

The problem of determining the shortest system of confidence intervals is 
immediately reduced to that of finding appropriate regions of acceptance. In fact, 
using the Proposition I and II or the Corollary I expressed by (26), we may rewrite 
the condition (97) as follows: 

P {EsAo( (0 '1) 01?0} P {EsA (0'i)l 0i0}, (98) 

where Ao (01) and A (01) denote the regions of acceptance leading to the systems 
of confidence intervals Co and C respectively. 

If Co is the shortest system, then (98) should hold whatever 01? and 0', and what- 
ever the regions of acceptance A (01), provided they correspond to the fixed confi- 
dence coefficient o. The condition (98) concerns the region of acceptance Ao (0'1), 
and it must be combined with that expressed by the Proposition III, namely that 

P {EsAo (0'1)I 0'1} =-P {EeA (0')1) } =, ...... (99) 

which must also hold for any O', and any values of the other parameters 0, ... .01 

We see that the problem of the shortest systems of confidence intervals correspond- 
ing to a confidence coefficient a is reduced to the following: 

(1) Fix any value of 01 = 0', and determine on the hyperplane G (60') a region 
A (60') similar to the sample space with regard to 02, ... 06 and of the size a. 

(2) Out of all such regions A (60') choose the one, Ao (60'), for which the 
probability P {EzA (0') 101?}, where 01? is any value of 01 different from 0'1, is 
minimum. 

(3) If the region Ao (0'1) so found does not lose its property of minimizing 
P {EsA (0') 1I ?} when the value 010 is changed, and if the whole system of the 
regions A, (0'1) corresponding to all possible values of 01 satisfies the conditions 
(i)-(iv) of p. 354, then it may be used as the system of regions of acceptance and will 
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determine the shortest system of confidence intervals. The problem as described in 
(1) and (2) has already been considered in connexion with the theory of testing 
statistical hypotheses (NEYMAN and PEARSON, 1933) and its solution is known. 
However, it is also known that the region, Ao (0',), satisfying the conditions (1) and 

(2) for a particular 61? does not always do so when that value of 01? is changed. 
It follows that the shortest systems of confidence intervals do not always exist. Still, 
they do exist occasionally. The reader acquainted with the joint paper mentioned 
will have no difficulty in checking that the confidence intervals determined by (61) 
and (62) in the case of the above Example I form the shortest system of confidence 
intervals. Applying the theory of the same paper, it is also easy to see that the 
confidence intervals defined by (90) and (91) with b = 1 - a form a system which is 
shortest of all those which could be constructed, using regions of acceptance belonging 
to the family based on the specific sufficient statistic x,. 

These, however, are rather rare cases. In order to emphasize this rareness, we 
shall prove the following proposition. 

Proposition X 

(1) If the probability law p (E 0) of the X's, depending upon one parameter 0, 
is continuous in the whole sample space W and if at any point of this space it admits 
a continuous derivative with regard to 0 not identically equal to zero, and admitting 
differentiation under the sign of the integral taken over W; 

(2) If A (0') is a region in the sample space W and 0' and 0" are two particular 
values of 0, such that 

P {E?A (0 ')O'} , .......... (100) 
and 

P {EsA (0')10"} c P {EsAj0"} ....... (101) 

where A is any other region in W such that P {EAI 0'} == ; 
(3) If on the boundary of A (0') there exists at least one point where p (Ej 0') is 

not zero, then there must exist a third value of 0 = "', and a region B in W, such 
that 

P{EsBIe'}= -- .......... (102) 

P {EsA (0')10'} > P {EzBI O"'}. ... ... . (103) 

It will be noticed that the Proposition X means that if the probability law of the 
X's satisfies the condition (1), then the shortest system of confidence intervals generally 
do not exist. It follows also that in such cases the uniformly most powerful tests of 

hypotheses specifying the value of 0 cannot exist. 
We shall prove the Proposition X, starting with the assumption that it is not 

correct and that whatever the value 0"', either smaller or larger than O', and what- 
ever the region B satisfying (102) it follows that 

P {EsA (0') 0"'} < P {EB| 0"'}. 
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It is known (NEYMAN and PEARSON, 1933) that in such a case, whatever the sample 
point E' within the region A (0'), then for any 0, 

p (E'[ 0) k (0)p (E' ') ......... (105) 

where k (0) depends only on 0 and not on the x's. At any point, E", outside A (0') 
we should have 

p (E"l(0) _ k (0)p (E"0') ......... (106) 

Owing to the continuity of the probability law p (E6 0) we shall have at any point 
E"' on the boundary of A (0',) 

p (E"'I ) = k (0)p (E"'eo')......... (107) 

We shall assume that p (E"'[0') > 0. As p (E"'oI) admits a derivative with regard 
to 0, it follows that k (0) must admit one. It follows also from (107) that if 0 ---> ' 

thenk (0) -- 1. Differentiating (107) with regard to 0, and putting 0 - 0' = A0, 
we can write the following expansion of k (0) 

k (0) = 1 + AO k' (o' + q AO) 
-1 + A p' (E"I'O + q A0)p-- (E"'0'),0 < q < 1, (108) 

where the dashes indicate differentiation with regard to 0. On the other hand, we 
can write also 

p (E'0) =p (E'll') + AOp' (E'l0' + - ), 0 < ) r < 1. . . (109) 

Substituting (108) and (109) in (105) and rearranging, we get 

ao ((p (E'eI' -+ rA) -' (E' + 0P (-E- i)) 0, . (110) p (E"'i0,') 

and this inequality must hold good at any point E' within A (0') and for any value 
of A 0. It follows that 

p' (E' O') _ p' (E"' 0O') p (E'l O') = 0 . ... (111) 
p (E"'I 0') 

at any point E' within A (0'). In fact, if the expression in the left-hand side of 

(111) were not zero, then, owing to the continuity ofp' (E 0), for sufficiently small 
values of A 0, the expression in brackets in (110) would not be zero and would have 
a constant sign. As A may be both positive and negative, the inequality (110) 
would not be satisfied. Using the inequality (106) holding good at any point 
outside A (0') and repeating the above argument, we could easily find that (111) 
must hold good also outside A (0') and therefore in the whole sample space W. 
Now it is easy to see that p' (El O') must be identically equal to zero, which contradicts 
the hypothesis (1) of the proposition X. 
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To show this we consider the integral 

f... fp (El ) dxl ... dx ........ (112) 

Differentiating it with regard to 0 and putting 0 =- ', we get 

|... (E IE') dx . . dx,- 0. ....... . .(113) 

We can calculatep' (El ') from (111) and substitute into (113). Using again (112) 
we find 

p' (E"le[0') = 0 . ..... ... ( 4) 
p (E"'10') 

Substituting this again in (111) we find p' (E! 0') = 0, whatever the point E in W. 
This proves the Proposition X. 

As the majority of probability laws with which we deal in practice, e.g., the normal 

law, satisfy the conditions of Proposition X, it is seen that, for practical purposes, 
some other type of systems of confidence intervals is required, as the shortest systems 
generally do not exist. 

(b) One-sided Estimation 

The proof of the above proposition is based upon the circumstance that the left- 
hand side of the inequality (110) must not change its sign, while A 0 is both positive 
and negative. 

It is therefore obvious that if it were for some reasons required to determine regions 
of acceptance A0 (0) satisfying the conditions 

P {EsA (01) 01} -c, . . . . . . . ... (112) 

whatever the value of 01 and whatever the values of other unknown parameters 
involved in the probability law of the X's, and also the condition 

P {EA,0 (O't)lO"l} P {EsA (O'l) 11}, (...... (113) 

whatever any other region A (0'1) satisfying (112) and whatever O'1 and 0"1, 

provided, however, the difference between them 0'1 - 0", is either always positive or always 
negative, then the solution of this problem would exist more frequently than that of 
the problem of the shortest systems of confidence intervals. 

The application of the regions of acceptance having the above properties is found 
useful in problems which may be called those of one-sided estimation. In frequent 
practical cases we are interested only in one limit which the value of the estimated 

parameter cannot exceed in one or in the other direction. When analysing seeds, 
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we ask for the minimum per cent. of germinating grains which it is possible to 
guarantee. When testing a new variety of cereals we are again interested in the 
minimum of gain in yield over the established standard which it is likely to give. 
In sampling manufactured products, the consumer will be interested to know the 
upper limit of the percentage defective which a given batch contains. Finally, in 
certain actuarial problems, we may be interested in the upper limit of mortality 
rate of a certain society group for which only a limited body of data is available. 

In all these cases we are interested in the value of one parameter, say, 01, and it is 
desired to determine only one estimate of the same, either 0 (E) or 0 (E), which we 
shall call the unique lower and the unique upper estimate respectively. If 01 is the 

percentage of germinating seeds, we are interested in its lower estimate 0 (E) so as 
to be able to state that 0 (E) c 01, while the estimation of the upper bound 0 (E) 
is of much less importance. On the other hand, if it is the question of the upper 
limit of mortality rate, 0, then we desire to make statements as to its value in the 
form 02 C 0 (E), etc. 

These are the problems of one-sided estimation, and it is easy to see that their most 

satisfactory solution depends upon the possibility of constructing regions of acceptance 
satisfying (1) and (2), the latter with the restriction that the sign of the difference 
0'1 - 0 " is constant. 

The two problems of the unique lower and the unique upper estimates are very 
similar, so that it will be sufficient to treat only one of them, e.g., the first. Suppose, 
then, that we are interested in the unique lower estimate 0 (E) of a parameter 01. 
Treating the problem from the point of view of confidence intervals, we desire to 
define a function 0 (E) of the sample point E such that whatever may be the true 
value ,0, of 01, the probability 

P {Q (E) c 0 e 0l?e}O= ... (114) 

where a is the chosen confidence coefficient. Repeating the reasonings of the 

preceding sections, we find that this problem is equivalent with that of choosing 
appropriate regions of acceptance and that there is an infinity of solutions. Let us 
now specify the properties of a solution which would make it more desirable than any 
other. 

For that purpose denote by 01? the unknown true value of 01 and by 0', and 0"i 

any two other values such that 
0'l < 01? < 8", . ........... (115) 

It is obvious that if we are interested only in the unique lower estimate of 01 and 
want the probability of 0 (E) falling short of the true value 01? to be equal to a, we 
should not mind 0 (E) being smaller than 0"'. Therefore, when choosing the 
function 0 (E), we should not formulate any restriction concerning its satisfying the 

inequality 9 (E) < 0"1, provided the equation (114) is satisfied. The position witl 

regard to 0'1 is different. If (E) happens to be smaller than 0'i, then it will also be 

3E2 

375 



J. NEYMAN 

smaller than 01? and our statement concerning the value of 01 based on 0 (E) will 
be correct. However, it would also be correct if, say, 

e (E) - (0' + 010) > 0'1 . . .... (116) 

and in such a case it would be more accurate and would undoubtedly be judged more 
desirable. Generalizing the above conclusion, we could say that whenever we are 
interested in the unique lower estimate 0 (E) of a parameter 01, we should require 
it to have the property that whatever O'l < 01?, the chance of _ (E) falling short of 
0'i should be as small as possible, thus 

P {(E) < 0' 101 0} minimum ....... (117) 

for all values of 60' and 010 such that 6', < 010. This condition implies that the 
region of acceptance Ao (0'1) corresponding to any value of 01 = 0' should have the 
property 

P {EeAo (0'1)010?} P {EAI0o0 . ....... (118) 

whatever 01? > 0', and whatever any other region A such that 

P {EeAI0'} = P {EAo0 (0'1)10'l1} a. ...... (119) 

Similarly, if it were desired to find the unique upper estimate 0 (E) of 01, the most 
desirable solution would be determined by the regions of acceptance, A? (01) such 
that 

P {EeA? (0'1)I010} . P {EAIl 00} ....... (120) 

whatever 01? < O', and whatever the region A satisfying (119). 
If unique estimates determined by (118) and (119) or (120) and (119) exist, they 

will be called the best one-sided estimates of 01. 
Following the recent results (NEYMAN and PEARSON, 1933, 1936, a) concerning the 

theory of testing hypotheses, it is easy to establish formulae giving the best one-sided 
estimates in many important problems. Of these I shall mention one. 

(c) Example III 

Consider the case where the probability law of the X's is normal 

p (Eli) ( e . ........ (121) 

with unknown [ and a and where it is desired to estimate i. Following the lines 
indicated, it is easily found that the best one-sided estimates of are given by 

1(E) = x + ts } 
i~ ~~.(E)= -ts^ 

......... . (122) E(E) =x-ts ' 
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where 

l I (Xi - i 2 
x= = ........ (123) x n ix n (n - 1) 

and t may be taken from Fisher's tables corresponding to P = 2 (1 - a).* 

(d) Short Unbiassed Systems of Confidence Intervals 

We must now consider the important case where we are interested in the two- 
sided estimation in which the probability law of the X's is highly regular so that, 
owing to Proposition X, the shortest systems of confidence intervals do not exist. 
We must formulate the properties of confidence intervals which could be considered 
as particularly satisfactory. 

We shall start with the obvious remark that, if possible, the value of the estimated 

parameter which in a particular case happens to be true, should be covered by the 
confidence interval more frequently than any other value. 

Alternatively, we may express this by saying that for any given value of 01 = 010 
the probability of its being covered by the confidence interval 8 (E) should be greatest 
when 01? happens to be the true value of 01. Therefore, whatever 0'1 $ 010, it must 
be 

P{8 (E) C010e01,} P{ (E) C0o10 j}. ..... (124) 

We may express this in still another manner, considering the probability of 010 
being covered by the confidence interval 8 (E) as a function of that value of 01 which 
happens to be true, 

P {8 (E) C0103, } =f(e,). ......... (125) 

The formula (124) requires that the function (125) should be maximum for 01 = 01? 
and that that maximum should be equal to c. 

It seems to be obvious that if there are many systems of confidence intervals in 
which, whatever 10, the probability (125) considered as a function of 01, is maximum 
for 01 01?, we should choose the system by which this maximum is the steepest, so 
that, while the true value of 01 is being shifted away from 01?, the chance of 01? being 
covered by 8 (E) diminishes in the quickest way. 

These conditions may now be expressed in terms of equivalent conditions con- 
cerning the regions of acceptance. 

* The properties of the formulae (122) giving the best one-sided estimates of 5 were found by the 
author in about 1930. Subsequently, these properties, together with an outline of the theory of 
estimation, were included in his lectures first given at the University of Warsaw, then, from 1934, at the 

University College, London, and also in a course of lectures at the University of Paris in January, 
1936. References to these formulae may be found both in Polish and English statistical literature. See 
for instance: (1)W. PYTKOWSKI: "The Dependence of the Income of Small Farms upon their Area, the 

Outlay and the Capital Invested in Cows ". Warsaw, 1932. See particularly pp. 28-29; (2) CLOPPER 
and PEARSON (1934). 

377 



J. NEYMAN 

Let A (01?) be a region of acceptance corresponding to some value 01? of O1, so 
that 

P {EeA (0I?)1 0?}a .......... (126) 
whatever 01?. We have 

f(01) P {8 (E) C01?01}-= P {E(A (01?)l} .. . . . (127) 

and the above conditions concerning the confidence intervals appear to be equivalent 
with the condition that the right-hand side of (127), considered as a function of 01, 
should be a maximum for 0 = 01? and that this maximum should be as sharp as 
possible. 

In cases where the elementary probability law of the X's, integrated over any 
region, admits two differentiations with regard to 01 under the integral sign, this 
leads to the following : 

Whatever 010, and whatever the values of other unknown parameters, 02, 0 ... . , 

aP {EIA()0 0 - , (El01 )0l- X P (, =... o,) dx& ..d . d .. (128) aoo 01 - 
-010 A (010) 

a2P {EeA (O 0)l0 } | -- 

- 

IS p" (El ... 0 1 .. 0) dx ... dx= minimum, (129) 
a6 2 

0? = 0? J A (01?) 

where p' and p" denote the derivatives with regard to 01. 
The system of confidence intervals having the above properties will be called the 

short unbiassed system. The possibility of determining such systems depends on the 

possibility of determining the regions of acceptance satisfying (126), (128), and (129). 
This problem has been recently dealt with in the case where the number of the 
unknown parameters involved in the probability law of the X's is equal to one 

(NEYMAN and PEARSON, 1936, a) and to two (NEYMAN, 1935, b). 
In such cases as treated in the papers referred to, the construction of the short 

unbiassed systems of confidence intervals does not present any difficulties. 
In particular, if the. probability law of the X's is as in (121), then the short un- 

biassed system of the confidence intervals for i is given by the formula 

x-- ts c + ts ........ (130) 

where t should be taken from Fisher's tables for P = 1 - a. 

IV-SUMMARY 

The main problem treated in this paper is that of confidence limits and of confidence 
intervals and may be briefly described as follows. Let p (xl,... x . |1, 02,... 01) 

p (El 01, ... 06) be the elementary probability law of n random variables x ... xn 
depending on I constant parameters 01, 2, ... 06. The letter E stands here for 
x1, . . . x. Suppose that the analytical nature ofp (xi, ... xnl 0i, ... 60) is known but 
the values of the parameters 01, .. 0. are unknown. It is required to determine two 

378 



STATISTICAL ESTIMAI'ION 

single-valued functions of the x's, 0 (E) and 0 (E) having the property that, what- 
ever the values of the O's, say 0'6, 0', .. . 0',, the probability of 0 (E) falling short of 
0', and at the same time of 0 (E) exceeding 0'6 is equal to a number a fixed in 
advance so that 0 < a < 1, 

P{ (E) (E) | ,0 ', (E)I0', 0 '2, ...' 0 = a. .... (131) 
It is essential to notice that in this problem the probability refers to the values of 

0 (E) and 0 (E) which, being single-valued functions of the x's, are random variables. 
O'1 being a constant, the left-hand side of (131) does not represent the probability of 
0'i falling within some fixed limits. 

The functions 0 (E) and 0 (E) are called the confidence limits for 01 and the 
interval (0 (E), 0 (E)) the confidence interval corresponding to the confidence 
coefficient a. 

The problem thus stated has been completely solved for the case where = 1, 
and it is found to possess an infinity of solutions. If 1 > 2 the solution obtained is 
limited to the case where there exists a sufficient set of statistics for 02, 03, ... 0 and 
then again there is an infinity of solutions. 

Methods were indicated by which it is possible to find among all possible solutions 
of the problem the one giving the confidence intervals which are shorter (in a sense 
defined in the text) than those corresponding to any other solution. 

The confidence limits 0 (E) and 0 (E) may be looked upon as giving a solution of 
the statistical problem of estimating 01 independent of any knowledge of probabilities 
a priori. Once 0 (E) and 0 (E) are determined corresponding to a value of a close 
to unity, say a = 0 99, the statistician desiring to estimate 01 may be recommended 
(1) to observe the values of the random variables xi,... x,, (2) to calculate the 
corresponding values of 0 (E) and 0 (E), and (3) to state that the value of the para- 
meter 01 is within the limits 0 (E) < 0 _< 0 (E). 

The justification of this recommendation lies in the fact that the three steps 
described are equivalent to a random experiment which may result either in a correct 
or in an erroneous statement concerning the value of 01, the probability of a correct 
statement being equal to ac = 0 99. Thus the statistician following the above recom- 
mendation is in a position comparable with that of a game of chance with the 
probability of winning being equal to oc = 0 99. 

The method followed to determine the confidence limits for a single parameter 
permits an obvious generalization for the case where the number of parameters to be 
estimnated simultaneously is greater than one. 

Three previous publications concerning the confidence intervals for which I am 
either partly or wholly responsible (NEYMAN, 1934, MATUSZEWSKI, NEYMAN, and 
SUPINSKA, 1935, NEYMAN, 1935, c) refer to the simplest case where the number of ran- 
dom variables and that of the parameters to be estimated are equal to unity. The prob- 
lem considered here is therefore far more general and also it is treated differently. 
Previously, the parameters to be estimated were considered as random variables 
following an arbitrary probability law which could be continuous or not and, even, 
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could reduce to unity just for one particular value of the parameter, being zero else- 
where. This arbitrariness of the probability law of the parameters served as an 
excuse, but the very assumption of its existence seemed to be an artificiality from which 
the present method of approach is entirely free. 

Subsidiary results obtained include a method of constructing similar regions which 
is more general than the one known previously and the Proposition X bearing on the 

theory of testing hypotheses. It emphasizes the rareness of cases where there exists 
a uniformly most powerful test. 
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