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(b) Review* of the Solutions of the Problem of Estimation Advanced Hereto

The first attempt to solve the problem of estimation is connected with the theorem
of Bayes and is applicable when the parameters 6, 0,, ... 6, in (5) are themselves
random variables. The theorem of Bayes leads to the formula

p (613 029 L ellx’17 x’2) L x’n)

_ P (05, 00 ...0)p(x",ay, ... 2,00,...6)
j. . j‘p (61, 62, « o o 61) p (x,1> x,z, « o x,ﬂlel, “ o e 61) del ¢ o o deb (7)~

representing the probability law of 04, 0,, ... 0, calculated under the assumption
that the observations have provided the values (6) of the variables (4). Here
p (84, ... 0,) denotes the probability law of the 0’s, called a priori, and the integral
in the denominator extends over all systems of values of the 6’s. The function
p (01, 0,y ... 0)]x"y, &5 ... &",) is called the a posteriori probability law of 6’s. In
cases where the a priori probability law p (04, 0,, ... 0,) is known, the formula (7)
permits the calculation of the most probable values of any of the 6’s and also of the
probability that 6,, say, will fall in any given interval, say, ¢ = 0; << 5. The most

probable value of 0,, say \é,-, may be considered as the estimate of 0; and then the
probability, say

PO, —~ A< 0< 6+ AE}, .. ... (8

. v . . .
will describe the accuracy of the estimate 0,, where A is any fixed positive number
and E’ denotes the set (6) of observations.



It is known that, as far as we work with the conception of probability as adopted in
this paper, the above theoretically perfect solution may be applied in practice only
in quite exceptional cases, and this for two reasons :

(a) It is only very rarely that the parameters 0,4, 0,, ... 6, are random variables.
They are generally unknown constants and therefore their probability law a prior:
has no meaning.

(6) Even if the parameters to be estimated, 0,4, 0,, .. .0;, could be considered as
random variables, the elementary probability law a priori, p (04, 05, ... 0;), is
usually unknown, and hence the formula (7) cannot be used because of the lack of
the necessary data.



II—CoNFIDENCE INTERVALS
(a) Statement of the Problem

After these somewhat long preliminaries, we may proceed to the statement of the
problem in its full generality.

Consider the variables (4) and assume that the form of their probability law (5) is
known, that it involves the parameters 0,, 0,,..., 6,, which are constant (not
random variables), and that the numerical values of these parameters are unknown.
It is desired to estimate one of these parameters, say 6,. By this I shall mean that
it is desired to define two functions 6 (E) and § (E) = 0 (E), determined and single
valued at any point E of the sample space, such that if E’ is the sample point deter-
mined by observation, we can (1) calculate the corresponding values of 6 (E’) and
6 (E’), and (2) state that the true value of 0, say 0,° is contained within the limits

O(EN)=06°"=0(E), . . ........((18)

this statement having some intelligible justification on the ground of the theory of
probability. _

'This point requires to be made more precise. Following the routine of thought
established under the influence of the Bayes Theorem, we could ask that, given the
sample point E’, the probability of 0,° falling within the limits (18) should be large,
say, « = 0:99, etc. If we express this condition by the formula

PO (E) <0< B (ENE}=a, « o o o o o .. (19)

we see at once that it contradicts the assumption that 0,° is constant. In fact, on
this assumption, whatever the fixed point E’ and the values 8 (E’) and 6 (E’), the
only values the probability (19) may possess are zero and unity. For this reason we
shall drop the specification of the problem as given by the condition (19).

Returning to the inequalities (18), we notice that while the central part, 6,’, is a
constant, the extreme parts § (E') and 6 (E’) are particular values of random
variables. In fact, the coordinates of the sample point E are the random variables
(4), and if 6 (E) and 6 (E) are single-valued functions of E, they must be random
variables themselves.



Therefore, whenever the functions 6 (E) and 6 (E) are defined in one way or
another, but the sample point E is not yet fixed by observation, we may legitimately
discuss the probability of 6 (E) and 6 (E) fulfilling any given inequality and in
particular the inequalities analogous to (18), in which, however, we must drop
the dashes specifying a particular fixed sample point E’.  We may also try to select
6 (E) and 6 (E) so that the probability of § (E) falling short of 0,° and at the same
time of 6 (E) exceeding 0,° is equal to any number « between zero and unity, fixed
in advance. If 6,° denotes the true value of 6,, then of course this probability must

be calculated under the assumption that 6,° is the true value of 6;. Thus we can
look for two function 0 (E) and 6 (E), such that

PO(E) =0,°=<6(E)|60,F=wa . . ... .. (20)

and require that the equation (20) holds good whatever the value 6,° of 0, and
whatever the values of the other parameters 0,, 05, . . ., 0,, involved in the probability
law of the X’s may be.

The functions ¢ (E) and 6 (E) satlsfymg the above conditions will be called the
lower and the upper confidence limits of 6,. The value « of the probability (20)
will be called the confidence coefficient, and the interval, say 3 (E), from 6 (E) to
6 (E), the confidence interval corresponding to the confidence coefficient «.

It is obvious that the form of the functions 6 (E) and 0 (E) must depend upon the

probability law p (E[6, ... 0)).



(b) Solution of the Problem of Confidence Intervals

In order to find the solution of the problem of confidence intervals, let us suppose
that it is already solved and that 0 (E) and 0 (E) are functions determined and single
valued in the whole sample space, W, and such that the equality (20) holds good
whatever the true values of the parameters 0, 0,, ... 6,. It will be convenient to
interpret the situation geometrically. For this purpose we shall need to consider
the space, G, of n 4 1 dimensions which we shall call the general space. The points
in this space will be determined by # + 1 coordinates x;, x,, . . . x,, 0,, the first # of
which are the particular values of the random variables (4) and thus determine the
position of a sample point, E, in the n-dimensional space W, and the last coordinate
0, is one of the possible values of the parameter 6, in the probability law p (E|6,... 6))
which we desire to estimate.

Consequently, if we consider any hyperplane, G (0,) in G corresponding to the
equation 0, = const., this may be interpreted as an image of the sample space W.
We notice also that to any point E in the sample space W there will correspond in G
a straight line, say L (E), parallel to the axis O6,. If x,’, x," ..., are the co-
ordinates of E’, then the line L (E’) will correspond to the equations x; = x; for
1=1,2,...n

Consider now the functions 8 (E) and 6 (E). On each line L (E), they will
determine two points, say B (E) and C (E) with coordinates

X Koy oo % O0(E) o0 0 0000 0oL (22)
and 8

Xy Xy o Xy O(B) 0 000000 (23)
respectively, where x;, x,, . .. %, are the coordinates of the sample point E. The

interval between B (E) and G (E) will be the image of the confidence interval § (E)
corresponding to the sample point E. If we fix a value of 6, = 0, and a sample
point E’, then the hyperplane G (6,") may cut or may not cut the confidence interval
8 (E). If G (60,") does cut 3 (E’), let @ (0,", E’) denote the point of intersection.
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Fic. 1—The general space G.

e vertical axis: parameter
* other axes: data

The acceptance region A represents
the set of covering confidence
intervals for each particular dataset.

Each confidence interval is defined
by

1<
G
IA

o', = 6 (E). . . (24

and corresponds to a given
confidence level (a given probability
of containing the true value of the
parameter)



The conception and properties of the regions of acceptance are exceedingly
important from the point of view of the theory given below. We shall therefore
discuss them in detail proving separately a few propositions, however simple they
may seem to be.

Proposition I—Whenever the sample point E falls within the region of acceptance
A (6',), corresponding to any fixed value 6’; of 0,, then the corresponding confidence
interval 8 (E) must cover 6';. |

Proof~—This proposition is a direct consequence of the definition of the region of
acceptance. Suppose it is not true. Then there must be at least one sample point,
say E’, which falls within A (6’;) and such that either 6 (E') =< 6 (E’) < 0'; or
0’ < 6 (E) = 0 (E). Comparing these inequalities with (24) which serve as a
definition of the region of acceptance A (0',), we see that E’ could not fall within
A (6',), which proves the Proposition I.



Proposition II—If a confidence interval 8 (E”’) corresponding to a sample point
E" covers a value 0'; of 6,, then the sample point E’ must fall within A (6",).

Proof—If & (E') covers 0y, then it follows that § (E”) < 6’, < 6 (E”"). Com-
paring these inequalities with (24) defining the region A (0 ) we see that E' must
fall within A (0';).

If we agree to denote generally by {BcA} the words “ B belongs to A or “ B is
an element of A ”’, then we may sum up the above two propositions by writing the
identity _

(EeA (0)} ={ (E) QO3 ={8 (E) = 0/, <0 (B)}, ... (25)

meaning that the event consisting in the sample point E falling within the region of
acceptance A (0',) is equivalent to the other event which consists in ', being covered
by 3 (E).

Corollary I—It follows from the Proposition I and II that whatever may be the
true values 0y, 0’5 ... 0, of the 0’s, the probability of any fixed value 6", of 6,

being covered by § (E) is identical with the probability of the sample point E falling
within A (6",).

P {5 (E) G6"4[07y,... 07} =P {0 (E) = 0", = 0 (E)]071, 075, ... 07}
= P{EcA (0",)]0y, 0%, ... 0"}, (26)



Review of the Neyman construction of the confidence intervals

1. Arbitrariness of confidence intervals

Example: estimate of the mean decay time in an exponential distribution with
T=3.76; n=10

0.35} | | | | | | ] 0.35)
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2 5 . 0.20¢
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T T
Covering (central) interval Non-covering interval

In these examples the confidence level (probability corresponding to the shaded area) =0.5



2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the
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decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals

0.25¢
0.20¢

. 0.15]
p(T) "

0.10¢

0.05}

0.00¢ Y

%ML =5.1

.1.0.

.12.

.14.




2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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2. Central intervals as random variables

Different estimates of the decay time produce different central intervals
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3. Range of estimates that produce a covering interval

In the example shown, all the values of the estimate TML in the interval
between 2.39 and 6.93 have central intervals with confidence level = 90% that
cover the true value of the parameter (3.76).

Unfortunately, we do not know the true value of the parameter ...

However we know how we could repeat the same construction over and over
again for different true values of the parameter.



true value of the
parameter

10t

for a given true value of the
parameter, this is the range of
the estimates thatlie in a
central interval —i.e., in a
given acceptance region —
with given CL (here 90%)

0 5

parameter estimate

15




Corollary I—It follows from the Proposition I and II that whatever may be the
true values 0y, 0’5 ... 0%, of the 0’s, the probability of any fixed value 6/, of 6,
being covered by 8 (E) is identical with the probability of the sample point E falling

within A (6"';).
P {3 (E) Ce”lla,la L0 =P {6 (E) =0" = 6 (E)!ella 679, ... 07}
= P{EeA (67,)]0'y, 05, ... 0} (26)



T+

Given an estimate of the
parameter obtained
from actual
measurement, this is the
range of true values that
are covered by a central
interval with a given
confidence level (here
90%) about the estimate

T_—

Here we know that all
the values between 7_
and 7 arecovered by a
central interval about
the estimate, with 90%
probability.
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This is instead an
example of a “upper
confidence limit”, where

Pir>1m_)=1—-«

(in this example o =
10%)
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FIG. 3. Standard confidence belt for 90% C.L. central confi-
dence intervals for the mean of a Gaussian, in units of the rms
deviation.



5. Coverage

Intervals can overcover (probability more than confidence level) or undercover
(probability less than confidence level). Neither option is OK, but overcovering
better than undercovering ...



5. Confidenceintervals and hypothesis testing

It is interesting to note that the choice of a confidence interval can be viewed as
a hypothesis test.

Here the hypothesis is that the parameter has a given value, and one excludes
all the values of the parameter that would be rejected with a given confidence
level.

If this is the case, it is possible to choose a test statistics, and one obvious choice
is to use the likelihood ratio:
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FIG. 3. Standard confidence belt for 90% C.L. central confi-
dence intervals for the mean of a Gaussian, in units of the rms
deviation.

Problem: the standard Gaussian confidence belt leads to negative values, and this is not
always acceptable ...



Poisson process with known background
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FIG. 5. Standard confidence belt for 90% C.L. upper limits, for
unknown Poisson signal mean u in the presence of a Poisson back-
ground with known mean »=3.0. The second line in the belt is at
n=-+®,
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To avoid problems at small values use a different choice of Cl’s (Feldman &
Cousins, 1998)
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Unified approach to the classical statistical analysis of small signals
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We give a classical confidence belt construction which unifies the treatment of upper confidence limits for
null results and two-sided confidence intervals for non-null results. The unified treatment solves a problem
(apparently not previously recognized) that the choice of upper limit or two-sided intervals leads to intervals
which are not confidence intervals if the choice is based on the data. We apply the construction to two related
problems which have recently been a battleground between classical and Bayesian statistics: Poisson processes
with background and Gaussian errors with a bounded physical region. In contrast with the usual classical
construction for upper limits, our construction avoids unphysical confidence intervals. In contrast with some
popular Bayesian intervals, our intervals eliminate conservatism (frequentist coverage greater than the stated
confidence) in the Gaussian case and reduce it to a level dictated by discreteness in the Poisson case. We
generalize the method in order to apply it to analysis of experiments searching for neutrino oscillations. We
show that this technique both gives correct coverage and is powerful, while other classical techniques that have
been used by neutrino oscillation search experiments fail one or both of these criteria.
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We begin with a numerical example which occurs in the
construction of confidence belts for a Poisson process with
background. The construction proceeds in the manner of Fig.
1, where the measurement x in Fig. 1 now corresponds to the
measured total number of events n.

Let the known mean background be »=3.0, and consider
the construction of the horizontal acceptance interval at sig-
nal mean u=0.5. Then P(n|w) is given by Eq. (3.2), and is
given in the second column of Table I.

Now consider, for example, n =0. For the assumed b =3.,
the probability of obtaining O events is 0.03 if ©x=0.5, which
i1s quite low on an absolute scale. However, it is not so low
when compared to the probability (0.05) of obtaining O
events with »=3.0 and ©=0.0, which is the alternate hy-
pothesis with the greatest likelihood. A ratio of likelihoods,
in this case 0.03/0.05, i1s what we use as our ordering prin-
ciple when selecting those values of n to place in the accep-
tance interval.



That 1s, for each n, we let u. be that value of the mean
signal u which maximizes P(n|u); we require iy to be
physically allowed, 1.e., non-negative in this case. Then
MUpest—Max(0,n—b), and 1s given in the third column of
Table 1. We then compute P(n|p.s), Which is given in the
fourth column. The fifth column contains the ratio

R=P(n|u)/P(n|tpes) (4.1)

and 1s the quantity on which our ordering principle is based.
R 1s a ratio of two likelihoods: the likelihood of obtaining »
given the actual mean w, and the likelihood of obtaining n
given the best-fit physically allowed mean.



given the best-fit physically allowed mean. Values of n are
added to the acceptance region for a given w in decreasing
order of R, until the sum of P(n|u) meets or exceeds the
desired C.L. This ordering, for values of n necessary to ob-
tain total probability of 90%, is shown in the column labeled

““rank.”” Thus, the acceptance region for u=0.5
i1s the interval
n=[0,6]. Because of the discreteness of n, the acceptance

region contains a summed probability greater than 90%; this
is unavoidable no matter what the ordering principle, and
leads to confidence intervals which are conservative.



TABLE I. Illustrative calculations in the confidence belt con-
struction for signal mean u in the presence of known mean back-
ground b =3.0. Here we find the acceptance interval for ©=0.5.

n  Pn|lpw) iy Pn|pp) R rank UL. central

0 0.030 0.0 0.050 0.607 6
1 0.106 0.0 0.149 0.708 5 \/ \/
2 0.185 0.0 0.224 0826 3 \/ \/
3 0216 0.0 0.224 0.963 2 \/ \/
4 0.189 1.0 0.195 0.966 1 \/ \/
5 0.132 2.0 0.175 0.753 4 \/ \/
6 0.077 3.0 0.161 0480 7 \/ \/
7 0.039 4.0 0.149 0.259 \/ \/
8 0017 50 0.140 0.121 \/
9 0.007 6.0 0.132 0.050 \/

10 0.002 7.0 0.125 0.018 \/

1T  0.001 8.0 0.119 0.006 \/




With a Gaussian distribution, things proceed similarly, with the difference that now one
takes non-central intervals ...

1/\2 7, x=0,

4.2
exp(—x2/2)/\2m, x<O. (42)

P(xllubest) = [

We then compute R in analogy to Eq. (4.1), using Egs. (3.1)
and (4.2):

exp(— (x—w)?/2), x=0
exp(xu—u?2),  x<0.

P(x|u)

R(X): P(xllu“best) B

(4.3)

During our Neyman construction of confidence intervals, R
determines the order in which values of x are added to the
acceptance region at a particular value of u. In practice, this
means that for a given value of u, one finds the interval
[x,,Xx,] such that R(x;)=R(x,) and

szP(xm)dx:a.

X1
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FIG. 10. Plot of our 90% confidence intervals for the mean of a
Gaussian, constrained to be non-negative, described in the text.



The CLs method

The CLs method is based on a simple test statistic

CLS—|—b

I —
('Ls CL,

where

CLS+b — Ps—l—b(X < Xobs>; CLb — Pb(X < Xobs)



