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I -INTRODUCTORY 

(a) General Remarks, JNotation, and Definitions 
We shall distinguish two aspects of the problems of estimation: (i) the practical 

and (ii) the theoretical. The practical aspect may be described as follows: 
(ia) The statistician is concerned with a population, nc, which for some reason or 

other cannot be studied exhaustively. It is only possible to draw a sample from 
this population which may be studied in detail and used to form an opinion as to 
the values of certain constants describing the properties of the population 7. For 
example, it may be desired to calculate approximately the mean of a certain character 
possessed by the individuals forming the population -r, etc. 

(ib) Alternatively, the statistician may be concerned with certain experiments 
which, if repeated under apparently identical conditions, yield varying results. 
Such experiments are called random experiments, (see p. 338). To explain or describe 
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STATISTICAL ESTIMATION 

be a system of n random variables, the particular values of which may be given by 
observation. The elementary probability law of these variables 

p (xl . . . Xn1, 02, ? . 0) .......... (5) 

depends in a known manner upon I parameters 0 ... 01, the values of which are not 
known. It is required to estimate one (or more) of these parameters, using the 
observed values of the variables (4), say 

x 1 , x 2 * * X n ..* * * * * * * * * * (6) 

(b) Review* of the Solutions of the Problem of Estimation Advanced Hereto 
The first attempt to solve the problem of estimation is connected with the theorem 

of Bayes and is applicable when the parameters 01, 02, . . 6, in (5) are themselves 
random variables. The theorem of Bayes leads to the formula 

P (01, 02, ... 0. IX'1, X' 2, .. Xn) 

p (01, 02 . . . 0) p (x' , X 2, ... xni 01 . 0l) 

I. JP (0, 02, ... . ,) p (X'1, X' , .. X 01'. , ... 0,) d . . . d,, (7). 

representing the probability law of 01, 02,... 0,, calculated under the assumption 
that the observations have provided the values (6) of the variables (4). Here 
p (01, ... 0,) denotes the probability law of the 0's, called a priori, and the integral 
in the denominator extends over all systems of values of the O's. The function 
p (01, 02, . . . 1x't1, x'2 ... x') is called the a posteriori probability law of 0's. In 
cases where the a priori probability law p (01, 02 ... 0 ) is known, the formula (7) 
permits the calculation of the most probable values of any of the O's and also of the 
probability that 0,, say, will fall in any given interval, say, a c 0i < b. The most 

v 
probable value of 0,, say 0,, may be considered as the estimate of 0, and then the 
probability, say v v 

v 

P{Oi--- A < 0i < 0i + A IE'}, ......... (8) 

will describe the accuracy of the estimate 0i, where A is any fixed positive number 
and E' denotes the set (6) of observations. 

It is known that, as far as we work with the conception of probability as adopted in 
this paper, the above theoretically perfect solution may be applied in practice only 
in quite exceptional cases, and this for two reasons: 

(a) It is only very rarely that the parameters 01, 02, ... 0, are random variables. 
They are generally unknown constants and therefore their probability law a priori 
has no meaning. 

* This review is not in any sense complete. Its purpose is to exemplify the attempts to solve the 
problem of estimation. 
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(b) Even if the parameters to be estimated, 01, 02, . . .0, could be considered as 
random variables, the elementary probability law a priori, p (01, 02, ... 0.), is 
usually unknown, and hence the formula (7) cannot be used because of the lack of 
the necessary data. 

When these difficulties were noticed, attempts were made to avoid them by 
introducing some new principle lying essentially outside the domain of the objective 
theory of probability. 

The first of the principles advanced involved the assumption that when we have 
no information as to the values of the O's, it is admissible to substitute in formula (7) 
some function of the O's selected on intuitive grounds, e.g., 

p (0 , 02,. . . 0) -- const. .......... (9) 
and use the result, say 

p, ( 1,... * I E') = - (xl,x2, : n^31 * ^^-----_ .... (10) 
.Jp (x'l, x'2 ... x'e 01,. . 0,) dOi ... dA 

as if this were the a posteriori probability law of the O's. 
This procedure is perfectly justifiable on the ground of certain theories of 

probability, e.g., as developed by HAROLD JEFFREYS, but it is not justifiable on the 
ground of the theory of probability adopted in this paper. In fact, the function 
Pi (01 ... . IE') as defined by (10) will not generally have the property serving as a 
definition of the elementary probability law of the O's. Its integral over any region 
w in the space of the O's will not be necessarily equal to the ratio of the measures of 
two sets of elements belonging to the fundamental probability set, which we call the 
probability. Consequently, if the experiment leading to the set of values of the x's 
is repeated many times and if we select such experiments (many of them) in which 
the observed values were the same, x1, x'2 ... x',, the assumed validity of the law 
of big numbers (in the sense of BORTKIEWIZ) will not guarantee that the frequency 

v v 
of cases where the true value of O, falls within Oi - A < O, < Oi + A will approach 
the value of (8), if this is calculated from (10). Moreover, if the 0's are 
constant, this frequency will be permanently zero or unity, thus essentially differing 
from (8). 

The next principle I shall mention is that advocating the use of the so-called 
unbiassed estimates and leading to the method of least squares. Partly following 
MARKOFF (1923), I shall formulate it as follows : 

In order to estimate a parameter 0, involved in the probability law (5), we should 
use an unbiassed estimate or, preferably, the best unbiassed estimate. 

A function, Fi, of the variables (4) is called an unbiassed estimate of Oi if its mathe- 
matical expectation is identically equal to ,O, whatever the actual values of 
0, 02,^... . Thus, 

(Fi,)- O ............. (11) 
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We shall find also that the comments on the values of T are largely dependent on 
those of ST. This shows that what the statisticians have really in mind in problems 
of estimation is not the idea of a unique estimate but that of two estimates having 
the form, say 

0 - -T -kST and = T + k ST,.... (17) 

where k1 and k2 are certain constants, indicating the limits between which the true 
value of 0 presumably falls. 

In this way the practical work, which is frequently in advance of the theory, 
brings us to consider the theoretical problem of estimating the parameter 0 by means 
of the interval (0, 0), extending from 0 to 0. These limits will be called the lower 
and upper estimates of 0 respectively. It is obvious that if the values of k1 and k2 
in (17) are not specified, then the real nature of the two estimates is not determined. 

In what follows, we shall consider in full detail the problem of estimation by 
interval. We shall show that it can be solved entirely on the ground of the theory 
of probability as adopted in this paper, without appealing to any new principles or 
measures of uncertainty in our judgements. In so doing, we shall try to determine 
the lower and upper estimates, 0 and 0, which assure the greatest possible accuracy 
of the result, without assuming that they must necessarily have the commonly 
adopted form (17). 

II-CONFIDENCE INTERVALS 

(a) Statement of the Problem 
After these somewhat long preliminaries, we may proceed to the statement of the 

problem in its full generality. 
Consider the variables (4) and assume that the form of their probability law (5) is 

known, that it involves the parameters 01, 02, . .., 0, which are constant (not 
random variables), and that the numerical values of these parameters are unknown. 
It is desired to estimate one of these parameters, say 01. By this I shall mean that 
it is desired to define two functions 0 (E) and 0 (E) z8 0 (E), determined and single 
valued at any point E of the sample space, such that if E' is the sample point deter- 
mined by observation, we can (1) calculate the corresponding values of 0 (E') and 
0 (E'), and (2) state that the true value of 01, say 01?, is contained within the limits 

H (E') c 01? c 0 (E'), .......... (18) 
this statement having some intelligible justification on the ground of the theory of 
probability. 

This point requires to be made more precise. Following the routine of thought 
established under the influence of the Bayes Theorem, we could ask that, given the 
sample point E', the probability of 01? falling within the limits (18) should be large, 
say, a = 0 99, etc. If we express this condition by the formula 

P{O (E') < 01? < 0 (EE') , ........ (19) 
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we see at once that it contradicts the assumption that 01? is constant. In fact, on 
this assumption, whatever the fixed point E' and the values 0 (E') and 0 (E'), the 
only values the probability (19) may possess are zero and unity. For this reason we 
shall drop the specification of the problem as given by the condition (19). 

Returning to the inequalities (18), we notice that while the central part, 01?, is a 
constant, the extreme parts 0 (E') and 0 (E') are particular values of random 
variables. In fact, the coordinates of the sample point E are the random variables 
(4), and if 0 (E) and 6 (E) are single-valued functions of E, they must be random 
variables themselves. 

Therefore, whenever the functions 0 (E) and 0 (E) are defined in one way or 
another, but the sample point E is not yet fixed by observation, we may legitimately 
discuss the probability of 0 (E) and 0 (E) fulfilling any given inequality and in 
particular the inequalities analogous to (18), in which, however, we must drop 
the dashes specifying a particular fixed sample point E'. We may also try to select 
8 (E) and 0 (E) so that the probability of 0 (E) falling short of 010 and at the same 
time of 0 (E) exceeding 01?, is equal to any number a between zero and unity, fixed 
in advance. If 01? denotes the true value of 01, then of course this probability must 
be calculated under the assumption that 01? is the true value of 01. Thus we can 
look for two function 0 (E) and 0 (E), such that 

P{ (E) ( E) ? 8} = . . . . ... (20) 

and require that the equation (20) holds good whatever the value 01? of 01 and 
whatever the values of the other parameters 02, 03, .., 0,, involved in the probability 
law of the X's may be. 

The functions 0 (E) and 0 (E) satisfying the above conditions will be called the 
lower and the upper confidence limits of 01. The value a of the probability (20) 
will be called the confidence coefficient, and the interval, say 8 (E), from 0 (E) to 
0 (E), the confidence interval corresponding to the confidence coefficient ct. 

It is obvious that the form of the functions 0 (E) and 0 (E) must depend upon the 
probability law p (E 01 ... . 0). 

It will be seen that the solution of the mathematical problem of determining the 
confidence limits 0 (E) and 0 (E) provides the solution of the practical problem of 
estimation by interval. For suppose that the functions 0 (E) and 0 (E) are deter- 
mined so that the equation (20) does hold good whatever the values of all the 
parameters 01, 2,. .. 0. may be, and ac is some fraction close to unity, say a = 0 99. 
We can then tell the practical statistician that whenever he is certain that the form 
of the probability law of the X's is given by the function p (El01, 2, ... 0,) which 
served to determine 0 (E) and 0 (E), he may estimate 01 by making the following 
three steps : (a) he must perform the random experiment and observe the particular 
values x1, X2, .. x. of the X's; (b) he must use these values to calculate the corre- 
spondingvalues of 0 (E) and 0(E) ; and (c) he must state that 0 (E) < 01? < 6 (E), 
where 1?0 denotes the true value of 01. How can this recommendation be 
justified ? 
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he actually chooses, the probability of his winning and thus the probability of the 
bank losing has permanently the same value, 1 - a. 

The choice of the gambler on what to bet, which is beyond the control of the bank, 
corresponds to the uncontrolled possibilities of 01 having this or that value. The 
case in which the bank wins the game corresponds to the correct statement of the 
actual value of 01. In both cases the frequency of " successes " in a long series of 
future " games " is approximately known. On the other hand, if the owner of the 
bank, say, in the case of roulette, knows that in a particular game the ball has stopped 
at the sector No. 1, this information does not help him in any way to guess how the 
gamblers have betted. Similarly, once the sample E' is drawn and the values of 
0 (E') 0 and (E') determined, the calculus of probability adopted here is helpless to 
provide answer to the question of what is the true value of 01. 

(b) Solution of the Problem of Confidence Intervals 
In order to find the solution of the problem of confidence intervals, let us suppose 

that it is already solved and that 0 (E) and 0 (E) are functions determined and single 
valued in the whole sample space, W, and such that the equality (20) holds good 
whatever the true values of the parameters 01, ,.. . . . It will be convenient to 
interpret the situation geometrically. For this purpose we shall need to consider 
the space, G, of n + 1 dimensions which we shall call the general space. The points 
in this space will be determined by n + 1 coordinates xI, x2, . . . xn, 01, the first n of 
which are the particular values of the random variables (4) and thus determine the 
position of a sample point, E, in the n-dimensional space W, and the last coordinate 
01 is one of the possible values of the parameter 01 in the probability lawp (E I o... o,) 
which we desire to estimate. 

Consequently, if we consider any hyperplane, G (01) in G corresponding to the 
equation 01 = const., this may be interpreted as an image of the sample space W. 
We notice also that to any point E in the sample space W there will correspond in G 
a straight line, say L (E), parallel to the axis O06. If xI', x2' . . . x' are the co- 
ordinates of E', then the line L (E') will correspond to the equations xi = xi' for 
i = 1, 2, ... n. 

Consider now the functions 0 (E) and 0 (E). On each line L (E), they will 
determine two points, say B (E) and C (E) with coordinates 

x, x2... x,, 0 (E) . .. .... .. . (22) 
and 

XL, X2... Xn, (E) . . .. . . . .. . . (23) 

respectively, where xl, x2 ... x are the coordinates of the sample point E. The 
interval between B (E) and C (E) will be the image of the confidence interval 8 (E) 
corresponding to the sample point E. If we fix a value of 01 - 01' and a sample 
point E', then the hyperplane G (01') may cut or may not cut the confidence interval 
8 (E'). If G (0,') does cut 8 (E'), let a (01', E') denote the point of intersection. 
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The position is illustrated in fig. 1, in which, however, only three axes of co- 
ordinates are drawn, Ox1, Oxn, and 001. The line L (E') is represented by a dotted 
vertical line and the confidence interval 8 (E') by a continuous section of this line, 
which is thicker above and thinner below the point a (0'1, E') of its intersection with' 
the hyperplane G (01'). The confidence interval 8 (E") corresponding to another 
sample point, E", is not cut by G (01') and is situated entirely above this hyperplane. 

Now denote by A (01') the set of all points a (0'1, E) in G (0'1) in which this 
hyperplane cuts one or the other of the confidence intervals 8 (E), corresponding to 
any sample point. It is easily seen that the coordinate 01 of any point belonging to 
A (0'1) is equal to 0'1 and that the remaining 
coordinates xl, x, . . . x satisfy the inequalities IL(E") 

0(E) O'1 0 (E). . (24) 0 ,L(E) SE 

In many particular problems it is found that I 
E 

the set of points A (01) thus defined is filling C(El 
up a region. Because of this A ('1) will be v1) \ 
called the region of acceptance corresponding T B 
to the fixed value of 01 = . 0, . 

It may not seem obvious that the region of .. | 
acceptance A (01) as defined above must exist / 
(contain points) for any value of 01. In fact, O 6L(E) LE 
it may seem possible that for certain values of 
01 the hyperplane G (01) may not cut any of io 
the intervals 8 (E). It will, however, be seen 
below that this is impossible. 

As mentioned above, the coordinates xl, 
x2,... x, of any sample point E determine in FIG. I-The general space G. 
the space G the straight line L (E) parallel to 
the axis of 01. If this line crosses the hyperplane G (01) in a point belonging to 
A (01) it will be convenient to say that E falls within A (01). 

If for a given sample point E the lower and the upper estimates satisfy the 
inequalities 0 (E) : 0O' c 0 (E), where 0', is any value of 01, then it will be con- 
venient to describe the situation by saying that the confidence interval 8 (E) covers 
0'1. This will be denoted by 8 (E) CO'1. 

The conception and properties of the regions of acceptance are exceedingly 
important from the point of view of the theory given below. We shall therefore 
discuss them in detail proving separately a few propositions, however simple they 
may seem to be. 

Proposition I-Whenever the sample point E falls within the region of acceptance 
A (0',), corresponding to any fixed value O'% of 01, then the corresponding confidence 
interval 8 (E) must cover 0'. 

Proof-This proposition is a direct consequence of the definition of the region of 
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In many particular problems it is found that I 
E 

the set of points A (01) thus defined is filling C(El 
up a region. Because of this A ('1) will be v1) \ 
called the region of acceptance corresponding T B 
to the fixed value of 01 = . 0, . 

It may not seem obvious that the region of .. | 
acceptance A (01) as defined above must exist / 
(contain points) for any value of 01. In fact, O 6L(E) LE 
it may seem possible that for certain values of 
01 the hyperplane G (01) may not cut any of io 
the intervals 8 (E). It will, however, be seen 
below that this is impossible. 

As mentioned above, the coordinates xl, 
x2,... x, of any sample point E determine in FIG. I-The general space G. 
the space G the straight line L (E) parallel to 
the axis of 01. If this line crosses the hyperplane G (01) in a point belonging to 
A (01) it will be convenient to say that E falls within A (01). 

If for a given sample point E the lower and the upper estimates satisfy the 
inequalities 0 (E) : 0O' c 0 (E), where 0', is any value of 01, then it will be con- 
venient to describe the situation by saying that the confidence interval 8 (E) covers 
0'1. This will be denoted by 8 (E) CO'1. 

The conception and properties of the regions of acceptance are exceedingly 
important from the point of view of the theory given below. We shall therefore 
discuss them in detail proving separately a few propositions, however simple they 
may seem to be. 

Proposition I-Whenever the sample point E falls within the region of acceptance 
A (0',), corresponding to any fixed value O'% of 01, then the corresponding confidence 
interval 8 (E) must cover 0'. 

Proof-This proposition is a direct consequence of the definition of the region of 
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acceptance. Suppose it is not true. Then there must be at least one sample point, 
say E', which falls within A (0'9) and such that either 0 (E') c 0 (E') < 0'1 or 
0'Q < 0 (E') c 0 (E'). Comparing these inequalities with (24) which serve as a 
definition of the region of acceptance A (0'1), we see that E' could not fall within 
A (0'1), which proves the Proposition I. 

Proposition II-If a confidence interval 8 (E") corresponding to a sample point 
E" covers a value O'1 of 01, then the sample point E" must fall within A (0'1). 

Proof-If a (E") covers O'Q, then it follows that 0 (E") c 0'Q c 0 (E"). Com- 
paring these inequalities with (24) defining the region A (90'), we see that E" must 
fall within A (0'1). 

If we agree to denote generally by {BsA} the words " B belongs to A " or " B is 
an element of A ", then we may sum up the above two propositions by writing the 
identity 

{EeA (0'1)} ({ (E) C0'1}- _0 (E) 5 0'1 c 0 (E)}, . . (25) 

meaning that the event consisting in the sample point E falling within the region of 
acceptance A (0',) is equivalent to the other event which consists in Of' being covered 
by 8 (E). 

Corollary I-It follows from the Proposition I and II that whatever may be the 
true values O',, 0' . . . 0'. of the 0's, the probability of any fixed value 0"9 of 01 
being covered by 8 (E) is identical with the probability of the sample point E falling 
within A (0",). 

P {8 (E) COj 1 0', , 0'} = P {0 (E) 0" 1 < 0 (E)E 0' , 0'2... 0'1 
- P{E.A (0",) ', , '2, ...' 0'}. (26) 

Proposition III-If the functions 0 (E) and 0 (E) are so determined that whatever 
may be the true values of 01, 0, ... 01, the probability, P, of the true value of 01 
being covered by the interval 8 (E) extending from 0 (E) to 0 (E) is always equal to 
a fixed number o, then the region of acceptance A (0',) corresponding to any fixed 
value 0', of 0, must have the property that the probability 

P {EzA (0')1 ,0', 0, ,. 0} - - a, ....... (27) 

whatever may be the values of the parameters 02 , 03,... 01. 

Proof-Assume that 0'9 happens to be the true value of 01 and denote generally 
by O'i the true value of i0, for i = 2, 3,... 1. The probability P, as defined in 
conditions of the Proposition III, may be expressed by means of the formula 

P = P{_ (E) c 0', c 0 (E) ',, 0'2, .. '. 0 ..... (28) 

Owing to (26), which holds good for any 0',, 0'2,... e0', we may write also 

P - P {EAA (0'1,) 0'1, 0',... ',. ........ (29) 
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Review	of	the	Neyman construction	of	the	confidence	intervals

1. Arbitrariness	of	confidence	intervals

Example:	estimate	of	the	mean	decay	time	in	an	exponential	distribution	 with	
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In	these	examples	the	confidence	 level	(probability	 corresponding	 to	the	shaded	area)	=	0.5
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals

⌧̂

p(⌧̂)

τML = 3.9

0 2 4 6 8 10 12 14

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35



2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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2.				Central	intervals	as	random	variables

Different	estimates	of	the	decay	time	produce	different	central	intervals
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3.				Range	of	estimates	that	produce	a	covering	interval

In	the	example	shown,	all	the	values	of	 the	estimate												in	the	interval	
between	2.39	and	6.93	have	central	intervals	with	confidence	 level	=	90%	that	
cover	the	true	value	of	the	parameter	(3.76).				

Unfortunately,	we	do	not	know	the	true	value	of	the	parameter	…	

However	we	know	how	we	could	 repeat	the	same	construction	over	and	over	
again	for	different	 true	values	of	the	parameter.	

⌧̂ML
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acceptance. Suppose it is not true. Then there must be at least one sample point, 
say E', which falls within A (0'9) and such that either 0 (E') c 0 (E') < 0'1 or 
0'Q < 0 (E') c 0 (E'). Comparing these inequalities with (24) which serve as a 
definition of the region of acceptance A (0'1), we see that E' could not fall within 
A (0'1), which proves the Proposition I. 

Proposition II-If a confidence interval 8 (E") corresponding to a sample point 
E" covers a value O'1 of 01, then the sample point E" must fall within A (0'1). 

Proof-If a (E") covers O'Q, then it follows that 0 (E") c 0'Q c 0 (E"). Com- 
paring these inequalities with (24) defining the region A (90'), we see that E" must 
fall within A (0'1). 

If we agree to denote generally by {BsA} the words " B belongs to A " or " B is 
an element of A ", then we may sum up the above two propositions by writing the 
identity 

{EeA (0'1)} ({ (E) C0'1}- _0 (E) 5 0'1 c 0 (E)}, . . (25) 

meaning that the event consisting in the sample point E falling within the region of 
acceptance A (0',) is equivalent to the other event which consists in Of' being covered 
by 8 (E). 

Corollary I-It follows from the Proposition I and II that whatever may be the 
true values O',, 0' . . . 0'. of the 0's, the probability of any fixed value 0"9 of 01 
being covered by 8 (E) is identical with the probability of the sample point E falling 
within A (0",). 

P {8 (E) COj 1 0', , 0'} = P {0 (E) 0" 1 < 0 (E)E 0' , 0'2... 0'1 
- P{E.A (0",) ', , '2, ...' 0'}. (26) 

Proposition III-If the functions 0 (E) and 0 (E) are so determined that whatever 
may be the true values of 01, 0, ... 01, the probability, P, of the true value of 01 
being covered by the interval 8 (E) extending from 0 (E) to 0 (E) is always equal to 
a fixed number o, then the region of acceptance A (0',) corresponding to any fixed 
value 0', of 0, must have the property that the probability 

P {EzA (0')1 ,0', 0, ,. 0} - - a, ....... (27) 

whatever may be the values of the parameters 02 , 03,... 01. 

Proof-Assume that 0'9 happens to be the true value of 01 and denote generally 
by O'i the true value of i0, for i = 2, 3,... 1. The probability P, as defined in 
conditions of the Proposition III, may be expressed by means of the formula 

P = P{_ (E) c 0', c 0 (E) ',, 0'2, .. '. 0 ..... (28) 

Owing to (26), which holds good for any 0',, 0'2,... e0', we may write also 

P - P {EAA (0'1,) 0'1, 0',... ',. ........ (29) 
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generally considered to be as serious a flaw as undercover-
age, comes with a price: loss of power in rejecting false
hypotheses.
Our confidence intervals require the full power of Ney-

man’s construction, which for one measured quantity and
one unknown parameter is called the method of ‘‘confidence
belts’’ @10,12#. Figure 1 illustrates such a construction on a
graph of the parameter m vs the measured quantity x . For
each value of m, one examines P(xum) along the horizontal
line through m. One selects an interval

@

x1 ,x2# which is a
subset of this line such that

P
~

xP
@

x1 ,x2#um!

5a . ~2.4!

Such intervals are drawn as horizontal line segments in Fig.
1, at representative values of m. We refer to the interval
@

x1 ,x2# as the ‘‘acceptance region’’ or the ‘‘acceptance in-
terval’’ for that m. In order to specify uniquely the accep-
tance region, one must choose auxiliary criteria. One has
total freedom to make this choice, if the choice is not influ-
enced by the data x0 . The most common choices are

P
~

x,x1um!

512a , ~2.5!

which leads to ‘‘upper confidence limits’’ ~which satisfy
P(m.m2)512a!, and

P
~

x,x1um!

5P
~

x.x2um!

5
~

12a

!

/2, ~2.6!

which leads to ‘‘central confidence intervals’’ @which satisfy
P(m,m1)5P(m.m2)5(12a)/2#. For these choices, the
full confidence belt construction is rarely mentioned, since a
simpler explanation suffices when one specifies P(x,x1um)
and P(x.x2um) separately. For more complicated choices
which still satisfy the more general specification of Eq. ~2.4!,
an ordering principle is needed to specify which x’s to in-
clude in the acceptance region. We give our ordering prin-
ciple in Sec. IV.

The construction is complete when horizontal acceptance
intervals are drawn for each value of m. Upon performing an
experiment to measure x and obtaining the value x0 , one
draws a vertical line ~shown as a dashed line in Fig. 1!
through x0 on the horizontal axis. The confidence interval is
the union of all values of m for which the corresponding
horizontal interval is intercepted by the vertical line; typi-
cally this is a simply connected interval

@

m1 ,m2# . When
displayed in texts, typically only the end points of the inter-
vals are drawn, which collectively form the ‘‘confidence
belt.’’
By construction, Eq. ~2.3! is satisfied for all m; hence it is

satisfied for m t , whose value is fixed but unknown.

III. EXAMPLES OF CLASSICAL INTERVALS

A. Gaussian with a boundary at the origin

Figures 2 and 3 show standard confidence belts ~for upper
limits and central intervals, respectively! when the observ-

FIG. 1. A generic confidence belt construction and its use. For
each value of m, one draws a horizontal acceptance interval

@

x1 ,x2#
such that P(xP

@

x1 ,x2#um)5a . Upon performing an experiment to
measure x and obtaining the value x0 , one draws the dashed verti-
cal line through x0 . The confidence interval @

m1 ,m2# is the union
of all values of m for which the corresponding acceptance interval is
intercepted by the vertical line.

FIG. 2. Standard confidence belt for 90% C.L. upper limits for
the mean of a Gaussian, in units of the rms deviation. The second
line in the belt is at x51` .

FIG. 3. Standard confidence belt for 90% C.L. central confi-
dence intervals for the mean of a Gaussian, in units of the rms
deviation.
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5. Coverage

Intervals	can	overcover (probability	more	than	confidence	level)	or	undercover	
(probability	 less	than	confidence	level).	Neither	option	 is	OK,	but	overcovering
better	than	undercovering …	



5.				Confidence	intervals	and	hypothesis	testing

It	is	interesting	to	note	that	the	choice	of	a	confidence	interval	can	be	viewed	as	
a	hypothesis	 test.	

Here	the	hypothesis	 is	that	the	parameter	has	a	given	value,	and	one	excludes	
all	the	values	of	the	parameter	that	would	be	rejected	with	a	given	confidence	
level.	

If	this	is	the	case,	it	is	possible	 to	choose	a	test	statistics,	and	one	obvious	 choice	
is	to	use	the	likelihood	 ratio:	

t =
L(D; ✓)

L(D; ✓̂)



generally considered to be as serious a flaw as undercover-
age, comes with a price: loss of power in rejecting false
hypotheses.
Our confidence intervals require the full power of Ney-

man’s construction, which for one measured quantity and
one unknown parameter is called the method of ‘‘confidence
belts’’ @10,12#. Figure 1 illustrates such a construction on a
graph of the parameter m vs the measured quantity x . For
each value of m, one examines P(xum) along the horizontal
line through m. One selects an interval

@

x1 ,x2# which is a
subset of this line such that

P
~

xP
@

x1 ,x2#um!

5a . ~2.4!

Such intervals are drawn as horizontal line segments in Fig.
1, at representative values of m. We refer to the interval
@

x1 ,x2# as the ‘‘acceptance region’’ or the ‘‘acceptance in-
terval’’ for that m. In order to specify uniquely the accep-
tance region, one must choose auxiliary criteria. One has
total freedom to make this choice, if the choice is not influ-
enced by the data x0 . The most common choices are

P
~

x,x1um!

512a , ~2.5!

which leads to ‘‘upper confidence limits’’ ~which satisfy
P(m.m2)512a!, and

P
~

x,x1um!

5P
~

x.x2um!

5
~

12a

!

/2, ~2.6!

which leads to ‘‘central confidence intervals’’ @which satisfy
P(m,m1)5P(m.m2)5(12a)/2#. For these choices, the
full confidence belt construction is rarely mentioned, since a
simpler explanation suffices when one specifies P(x,x1um)
and P(x.x2um) separately. For more complicated choices
which still satisfy the more general specification of Eq. ~2.4!,
an ordering principle is needed to specify which x’s to in-
clude in the acceptance region. We give our ordering prin-
ciple in Sec. IV.

The construction is complete when horizontal acceptance
intervals are drawn for each value of m. Upon performing an
experiment to measure x and obtaining the value x0 , one
draws a vertical line ~shown as a dashed line in Fig. 1!
through x0 on the horizontal axis. The confidence interval is
the union of all values of m for which the corresponding
horizontal interval is intercepted by the vertical line; typi-
cally this is a simply connected interval

@

m1 ,m2# . When
displayed in texts, typically only the end points of the inter-
vals are drawn, which collectively form the ‘‘confidence
belt.’’
By construction, Eq. ~2.3! is satisfied for all m; hence it is

satisfied for m t , whose value is fixed but unknown.

III. EXAMPLES OF CLASSICAL INTERVALS

A. Gaussian with a boundary at the origin

Figures 2 and 3 show standard confidence belts ~for upper
limits and central intervals, respectively! when the observ-

FIG. 1. A generic confidence belt construction and its use. For
each value of m, one draws a horizontal acceptance interval

@

x1 ,x2#
such that P(xP

@

x1 ,x2#um)5a . Upon performing an experiment to
measure x and obtaining the value x0 , one draws the dashed verti-
cal line through x0 . The confidence interval @

m1 ,m2# is the union
of all values of m for which the corresponding acceptance interval is
intercepted by the vertical line.

FIG. 2. Standard confidence belt for 90% C.L. upper limits for
the mean of a Gaussian, in units of the rms deviation. The second
line in the belt is at x51` .

FIG. 3. Standard confidence belt for 90% C.L. central confi-
dence intervals for the mean of a Gaussian, in units of the rms
deviation.
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Problem:	the	standard	Gaussian	confidence	belt	leads	to	negative	values,	and	this	is	not	
always	acceptable	…	



Poisson	process	with	known	background
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able x is simply the measured value of m in an experiment
with a Gaussian resolution function with known fixed rms
deviation s, set here to unity. I.e.,

P
~

xum
!

5
1

A2p

exp
@

2
~

x2m

!

2/2
#

. ~3.1!

We consider the interesting case where only non-negative
values for m are physically allowed ~for example, if m is a
mass!. Thus, the graph does not exist for m,0.
Although these are standard graphs, we believe that com-

mon use of them is not entirely proper. Figure 2, constructed
using Eq. ~2.5!, is appropriate for experiments when it is
determined before performing the experiment that an upper
limit will be published. Figure 3, constructed using Eq. ~2.6!,
is appropriate for experiments when it is determined before
performing the experiment that a central confidence interval
will be published. However, it may be deemed more sensible
to decide, based on the results of the experiment, whether to
publish an upper limit or a central confidence interval.
Let us suppose, for example, that physicist X takes the

following attitude in an experiment designed to measure a
small quantity: ‘‘If the result x is less then 3s, I will state an
upper limit from the standard tables. If the result is greater
than 3s, I will state a central confidence interval from the
standard tables.’’ We call this policy ‘‘flip-flopping’’ based
on the data. Furthermore, physicist X may say, ‘‘If my mea-
sured value of a physically positive quantity is negative, I
will pretend that I measured zero when quoting a confidence
interval,’’ which introduces some conservatism.
We can examine the effect of such a flip-flopping policy

by displaying it in confidence-belt form as shown in Fig. 4.
For each value of measured x , we draw at that x the vertical
segment

@

m1 ,m2# that physicist X will quote as a confidence
interval. Then we can examine this collection of vertical con-
fidence intervals to see what horizontal acceptance intervals

it implies. For example, for m52.0, the acceptance interval
has x15221.28 and x25211.64. This interval only con-
tains 85% of the probability P(xum). Thus Eq. ~2.4! is not
satisfied. Physicists X’s intervals undercover for a significant
range of m: they are not confidence intervals or conservative
confidence intervals.
Both Figs. 2 and 3 are confidence intervals when used

appropriately, i.e., without flip-flopping. However, the result
is unsatisfying when one measures, for example, x521.8.
In that case, one draws the vertical line as directed and finds
that the confidence interval is the empty set. @An alternative
way of expressing this situation is to allow non-physical m’s
when constructing the confidence belt, and then to say that
the confidence interval is entirely in the non-physical region.
This requires knowing P(xum) for non-physical m, which
can raise conceptual difficulties.# When this situation arises,
one knows that one is in the ‘‘wrong’’ 10% of the ensemble
quoting 90% C.L. intervals. One can go ahead and quote the
wrong result, and the ensemble of intervals will have the
proper coverage. But this is not very comforting.
Both problems of the previous two paragraphs are solved

by the ordering principle which we give in Sec. IV.

B. Poisson process with background

Figures 5 and 6 show standard @13,14# confidence belts
for a Poisson process when the observable x is the total
number of observed events, n , consisting of signal events
with mean m and background events with known mean b .
I.e.,

P
~

num
!

5
~

m1b
!

nexp
@

2
~

m1b
!

#

/n!. ~3.2!

In these figures, we use for illustration the case where
b53.0.
Since n is an integer, Eq. ~2.3! can only be approximately

satisfied. By convention dating to the 1930s, one strictly
avoids undercoverage and replaces the equality in Eq. ~2.3!
with ‘‘>.’’ Thus the intervals overcover, and are conserva-
tive.

FIG. 4. Plot of confidence belts implicitly used for 90% C.L.
confidence intervals ~vertical intervals between the belts! quoted by
flip-flopping physicist X, described in the text. They are not valid
confidence belts, since they can cover the true value at a frequency
less than the stated confidence level. For 1.36,m,4.28, the cov-
erage ~probability contained in the horizontal acceptance interval! is
85%.

FIG. 5. Standard confidence belt for 90% C.L. upper limits, for
unknown Poisson signal mean m in the presence of a Poisson back-
ground with known mean b53.0. The second line in the belt is at
n51` .
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To	avoid	problems	at	small	values	use	a	different	choice	of	CI’s	(Feldman	&	
Cousins,	1998)

Unified approach to the classical statistical analysis of small signals

Gary J. Feldman*
Department of Physics, Harvard University, Cambridge, Massachusetts 02138
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We give a classical confidence belt construction which unifies the treatment of upper confidence limits for
null results and two-sided confidence intervals for non-null results. The unified treatment solves a problem
~apparently not previously recognized! that the choice of upper limit or two-sided intervals leads to intervals
which are not confidence intervals if the choice is based on the data. We apply the construction to two related
problems which have recently been a battleground between classical and Bayesian statistics: Poisson processes
with background and Gaussian errors with a bounded physical region. In contrast with the usual classical
construction for upper limits, our construction avoids unphysical confidence intervals. In contrast with some
popular Bayesian intervals, our intervals eliminate conservatism ~frequentist coverage greater than the stated
confidence! in the Gaussian case and reduce it to a level dictated by discreteness in the Poisson case. We
generalize the method in order to apply it to analysis of experiments searching for neutrino oscillations. We
show that this technique both gives correct coverage and is powerful, while other classical techniques that have
been used by neutrino oscillation search experiments fail one or both of these criteria.
@S0556-2821~98!00109-X#

PACS number~s!: 06.20.Dk, 14.60.Pq

I. INTRODUCTION

Classical confidence intervals are the traditional way in
which high energy physicists report errors on results of ex-
periments. Approximate methods of confidence interval con-
struction, in particular the likelihood-ratio method, are often
used in order to reduce computation. When these approxima-
tions are invalid, true confidence intervals can be obtained
using the original ~defining! construction of Neyman @1#. In
recent years, there has been considerable dissatisfaction with
the usual results of Neyman’s construction for upper confi-
dence limits, in particular when the result is an unphysical
~or empty set! interval. This dissatisfaction led the Particle
Data Group ~PDG! @2# to describe procedures for Bayesian
interval construction in the troublesome cases: Poisson pro-
cesses with background and Gaussian errors with a bounded
physical region.
In this paper, we use the freedom inherent in Neyman’s

construction in a novel way to obtain a unified set of classi-
cal confidence intervals for setting upper limits and quoting
two-sided confidence intervals. The new element is a particu-
lar choice of ordering, based on likelihood ratios, which we
substitute for more common choices in Neyman’s construc-
tion. We then obtain confidence intervals which are never
unphysical or empty. Thus they remove an original motiva-
tion for the description of Bayesian intervals by the PDG.
Moreover, we show below that commonly quoted confi-

dence intervals are wrong more than allowed by the stated
confidence if ~as is typical! one uses the experimental data to

decide whether to consult confidence interval tables for up-
per limits or for central confidence intervals. In contrast, our
unified set of confidence intervals satisfies ~by construction!
the classical criterion of frequentist coverage of the unknown
true value. Thus the problem of wrong confidence intervals
is also solved.
Our intervals also effectively decouple the calculation of

intervals from the test of goodness-of-fit, which is desirable
but in fact not the case for traditional classical upper limit
calculations.
After developing the new intervals for the two prototypi-

cal 1D problems, we generalize them for use in the analysis
of experiments searching for neutrino oscillations, continu-
ing to adhere to the Neyman construction.
In Sec. II, we review and contrast Bayesian and classical

interval construction. In Sec. III, we review the troublesome
cases of Poisson processes with background and Gaussian
errors with a bounded physical region. We introduce the uni-
fying ordering principle in Sec. IV, and apply it to the pre-
viously discussed problems. In Sec. V, we generalize the
method for use in neutrino oscillation searches, and compare
it to other classical methods. Finally, in Sec. VI, we intro-
duce an additional quantity helpful in describing experiments
which observe less background than expected. We conclude
in Sec. VII.
We adopt the following notation: the subscript t on a

parameter means the unknown true value; the subscript 0
means a particular measured value obtained by an experi-
ment. Thus, for example, m is a parameter whose true value
m t is unknown; n0 is the particular result of an experiment
which measures the number of events, n . For most of our
discussion, we use for illustration 90% confidence level
~C.L.! confidence intervals on a single parameter m. The C.L.
is more generally called a.
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Although the word ‘‘conservative’’ in this context may be
viewed by some as desirable, in fact it is an undesirable
property of a set of confidence intervals. Ideal intervals cover
the unknown true value at exactly the stated confidence: 90%
C.L. intervals should fail to contain the true value 10% of the
time. If one desires intervals which cover more than 90% of
the time, the solution is not to add conservatism to the inter-
vals, but rather to choose a higher confidence level. The dis-
creteness of n in the Poisson problem leads unavoidably to
some conservatism, but this is unfortunate, not a virtue.
The Poisson intervals in Figs. 5 and 6 suffer from the

same problems as the Gaussian intervals. First, if physicist X
uses the data to decide whether to use Fig. 5 or Fig. 6, then
the resulting hybrid set can undercover. Second, there is a
well-known problem if, for example, b53.0 and no events
are observed. In that case, the confidence interval is again the
empty set. These problems are solved by the ordering prin-
ciple given in Sec. IV.
For this Poisson case, there is an alternative set of inter-

vals, given by Crow and Gardner @15#, which is instructive
because it requires the full Neyman construction. In con-
structing these intervals, one minimizes the horizontal length
of the acceptance region

@

n1 ,n2# at each value of m. Since n
is a discrete variable, the concept of length in the horizontal
direction can be well defined as the number of discrete
points. Said another way, the points in the acceptance inter-
val at each m are chosen in order of decreasing P(num), until
the sum of P(num) meets or exceeds the desired C.L. ~There
are other technical details in the original paper.! The Crow-
Gardner intervals are instructive because neither Eq. ~2.5!
nor Eq. ~2.6! is satisfied, even as a conservative inequality.
~Recall that x is identified with n in this section.! For
a50.9, P(n,n1um) varies between 0.018 and 0.089, and
P(n.n2um) varies between 0.011 and 0.078, in a manner
dictated by the Neyman construction so that always
P(nP

@

n1 ,n2#um)>0.9. Like Crow and Gardner, we use
Neyman’s construction, but with a different ordering for
choosing the points in the acceptance interval.

IV. NEW INTERVALS FROM AN ORDERING PRINCIPLE
BASED ON LIKELIHOOD RATIOS

A. Poisson process with background

We begin with a numerical example which occurs in the
construction of confidence belts for a Poisson process with
background. The construction proceeds in the manner of Fig.
1, where the measurement x in Fig. 1 now corresponds to the
measured total number of events n .
Let the known mean background be b53.0, and consider

the construction of the horizontal acceptance interval at sig-
nal mean m50.5. Then P(num) is given by Eq. ~3.2!, and is
given in the second column of Table I.
Now consider, for example, n50. For the assumed b53.,

the probability of obtaining 0 events is 0.03 if m50.5, which
is quite low on an absolute scale. However, it is not so low
when compared to the probability ~0.05! of obtaining 0
events with b53.0 and m50.0, which is the alternate hy-
pothesis with the greatest likelihood. A ratio of likelihoods,
in this case 0.03/0.05, is what we use as our ordering prin-
ciple when selecting those values of n to place in the accep-
tance interval.
That is, for each n , we let mbest be that value of the mean

signal m which maximizes P(num); we require mbest to be
physically allowed, i.e., non-negative in this case. Then
mbest5max(0,n2b), and is given in the third column of
Table I. We then compute P(numbest), which is given in the
fourth column. The fifth column contains the ratio

R5P
~

num
!

/P
~

numbest!, ~4.1!

and is the quantity on which our ordering principle is based.
R is a ratio of two likelihoods: the likelihood of obtaining n
given the actual mean m, and the likelihood of obtaining n
given the best-fit physically allowed mean. Values of n are
added to the acceptance region for a given m in decreasing
order of R , until the sum of P(num) meets or exceeds the
desired C.L. This ordering, for values of n necessary to ob-
tain total probability of 90%, is shown in the column labeled
‘‘rank.’’ Thus, the acceptance region for m50.5 ~analogous

FIG. 6. Standard confidence belt for 90% C.L. central confi-
dence intervals, for unknown Poisson signal mean m in the presence
of a Poisson background with known mean b53.0.

TABLE I. Illustrative calculations in the confidence belt con-
struction for signal mean m in the presence of known mean back-
ground b53.0. Here we find the acceptance interval for m50.5.

n P(num) mbest P(numbest) R rank U.L. central

0 0.030 0.0 0.050 0.607 6
1 0.106 0.0 0.149 0.708 5 A A
2 0.185 0.0 0.224 0.826 3 A A
3 0.216 0.0 0.224 0.963 2 A A
4 0.189 1.0 0.195 0.966 1 A A
5 0.132 2.0 0.175 0.753 4 A A
6 0.077 3.0 0.161 0.480 7 A A
7 0.039 4.0 0.149 0.259 A A
8 0.017 5.0 0.140 0.121 A
9 0.007 6.0 0.132 0.050 A
10 0.002 7.0 0.125 0.018 A
11 0.001 8.0 0.119 0.006 A
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Although the word ‘‘conservative’’ in this context may be
viewed by some as desirable, in fact it is an undesirable
property of a set of confidence intervals. Ideal intervals cover
the unknown true value at exactly the stated confidence: 90%
C.L. intervals should fail to contain the true value 10% of the
time. If one desires intervals which cover more than 90% of
the time, the solution is not to add conservatism to the inter-
vals, but rather to choose a higher confidence level. The dis-
creteness of n in the Poisson problem leads unavoidably to
some conservatism, but this is unfortunate, not a virtue.
The Poisson intervals in Figs. 5 and 6 suffer from the

same problems as the Gaussian intervals. First, if physicist X
uses the data to decide whether to use Fig. 5 or Fig. 6, then
the resulting hybrid set can undercover. Second, there is a
well-known problem if, for example, b53.0 and no events
are observed. In that case, the confidence interval is again the
empty set. These problems are solved by the ordering prin-
ciple given in Sec. IV.
For this Poisson case, there is an alternative set of inter-

vals, given by Crow and Gardner @15#, which is instructive
because it requires the full Neyman construction. In con-
structing these intervals, one minimizes the horizontal length
of the acceptance region

@

n1 ,n2# at each value of m. Since n
is a discrete variable, the concept of length in the horizontal
direction can be well defined as the number of discrete
points. Said another way, the points in the acceptance inter-
val at each m are chosen in order of decreasing P(num), until
the sum of P(num) meets or exceeds the desired C.L. ~There
are other technical details in the original paper.! The Crow-
Gardner intervals are instructive because neither Eq. ~2.5!
nor Eq. ~2.6! is satisfied, even as a conservative inequality.
~Recall that x is identified with n in this section.! For
a50.9, P(n,n1um) varies between 0.018 and 0.089, and
P(n.n2um) varies between 0.011 and 0.078, in a manner
dictated by the Neyman construction so that always
P(nP

@

n1 ,n2#um)>0.9. Like Crow and Gardner, we use
Neyman’s construction, but with a different ordering for
choosing the points in the acceptance interval.

IV. NEW INTERVALS FROM AN ORDERING PRINCIPLE
BASED ON LIKELIHOOD RATIOS

A. Poisson process with background

We begin with a numerical example which occurs in the
construction of confidence belts for a Poisson process with
background. The construction proceeds in the manner of Fig.
1, where the measurement x in Fig. 1 now corresponds to the
measured total number of events n .
Let the known mean background be b53.0, and consider

the construction of the horizontal acceptance interval at sig-
nal mean m50.5. Then P(num) is given by Eq. ~3.2!, and is
given in the second column of Table I.
Now consider, for example, n50. For the assumed b53.,

the probability of obtaining 0 events is 0.03 if m50.5, which
is quite low on an absolute scale. However, it is not so low
when compared to the probability ~0.05! of obtaining 0
events with b53.0 and m50.0, which is the alternate hy-
pothesis with the greatest likelihood. A ratio of likelihoods,
in this case 0.03/0.05, is what we use as our ordering prin-
ciple when selecting those values of n to place in the accep-
tance interval.
That is, for each n , we let mbest be that value of the mean

signal m which maximizes P(num); we require mbest to be
physically allowed, i.e., non-negative in this case. Then
mbest5max(0,n2b), and is given in the third column of
Table I. We then compute P(numbest), which is given in the
fourth column. The fifth column contains the ratio
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and is the quantity on which our ordering principle is based.
R is a ratio of two likelihoods: the likelihood of obtaining n
given the actual mean m, and the likelihood of obtaining n
given the best-fit physically allowed mean. Values of n are
added to the acceptance region for a given m in decreasing
order of R , until the sum of P(num) meets or exceeds the
desired C.L. This ordering, for values of n necessary to ob-
tain total probability of 90%, is shown in the column labeled
‘‘rank.’’ Thus, the acceptance region for m50.5 ~analogous

FIG. 6. Standard confidence belt for 90% C.L. central confi-
dence intervals, for unknown Poisson signal mean m in the presence
of a Poisson background with known mean b53.0.

TABLE I. Illustrative calculations in the confidence belt con-
struction for signal mean m in the presence of known mean back-
ground b53.0. Here we find the acceptance interval for m50.5.

n P(num) mbest P(numbest) R rank U.L. central

0 0.030 0.0 0.050 0.607 6
1 0.106 0.0 0.149 0.708 5 A A
2 0.185 0.0 0.224 0.826 3 A A
3 0.216 0.0 0.224 0.963 2 A A
4 0.189 1.0 0.195 0.966 1 A A
5 0.132 2.0 0.175 0.753 4 A A
6 0.077 3.0 0.161 0.480 7 A A
7 0.039 4.0 0.149 0.259 A A
8 0.017 5.0 0.140 0.121 A
9 0.007 6.0 0.132 0.050 A
10 0.002 7.0 0.125 0.018 A
11 0.001 8.0 0.119 0.006 A
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Although the word ‘‘conservative’’ in this context may be
viewed by some as desirable, in fact it is an undesirable
property of a set of confidence intervals. Ideal intervals cover
the unknown true value at exactly the stated confidence: 90%
C.L. intervals should fail to contain the true value 10% of the
time. If one desires intervals which cover more than 90% of
the time, the solution is not to add conservatism to the inter-
vals, but rather to choose a higher confidence level. The dis-
creteness of n in the Poisson problem leads unavoidably to
some conservatism, but this is unfortunate, not a virtue.
The Poisson intervals in Figs. 5 and 6 suffer from the

same problems as the Gaussian intervals. First, if physicist X
uses the data to decide whether to use Fig. 5 or Fig. 6, then
the resulting hybrid set can undercover. Second, there is a
well-known problem if, for example, b53.0 and no events
are observed. In that case, the confidence interval is again the
empty set. These problems are solved by the ordering prin-
ciple given in Sec. IV.
For this Poisson case, there is an alternative set of inter-

vals, given by Crow and Gardner @15#, which is instructive
because it requires the full Neyman construction. In con-
structing these intervals, one minimizes the horizontal length
of the acceptance region
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n1 ,n2# at each value of m. Since n
is a discrete variable, the concept of length in the horizontal
direction can be well defined as the number of discrete
points. Said another way, the points in the acceptance inter-
val at each m are chosen in order of decreasing P(num), until
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are other technical details in the original paper.! The Crow-
Gardner intervals are instructive because neither Eq. ~2.5!
nor Eq. ~2.6! is satisfied, even as a conservative inequality.
~Recall that x is identified with n in this section.! For
a50.9, P(n,n1um) varies between 0.018 and 0.089, and
P(n.n2um) varies between 0.011 and 0.078, in a manner
dictated by the Neyman construction so that always
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n1 ,n2#um)>0.9. Like Crow and Gardner, we use
Neyman’s construction, but with a different ordering for
choosing the points in the acceptance interval.

IV. NEW INTERVALS FROM AN ORDERING PRINCIPLE
BASED ON LIKELIHOOD RATIOS

A. Poisson process with background

We begin with a numerical example which occurs in the
construction of confidence belts for a Poisson process with
background. The construction proceeds in the manner of Fig.
1, where the measurement x in Fig. 1 now corresponds to the
measured total number of events n .
Let the known mean background be b53.0, and consider

the construction of the horizontal acceptance interval at sig-
nal mean m50.5. Then P(num) is given by Eq. ~3.2!, and is
given in the second column of Table I.
Now consider, for example, n50. For the assumed b53.,

the probability of obtaining 0 events is 0.03 if m50.5, which
is quite low on an absolute scale. However, it is not so low
when compared to the probability ~0.05! of obtaining 0
events with b53.0 and m50.0, which is the alternate hy-
pothesis with the greatest likelihood. A ratio of likelihoods,
in this case 0.03/0.05, is what we use as our ordering prin-
ciple when selecting those values of n to place in the accep-
tance interval.
That is, for each n , we let mbest be that value of the mean

signal m which maximizes P(num); we require mbest to be
physically allowed, i.e., non-negative in this case. Then
mbest5max(0,n2b), and is given in the third column of
Table I. We then compute P(numbest), which is given in the
fourth column. The fifth column contains the ratio

R5P
~

num
!

/P
~

numbest!, ~4.1!

and is the quantity on which our ordering principle is based.
R is a ratio of two likelihoods: the likelihood of obtaining n
given the actual mean m, and the likelihood of obtaining n
given the best-fit physically allowed mean. Values of n are
added to the acceptance region for a given m in decreasing
order of R , until the sum of P(num) meets or exceeds the
desired C.L. This ordering, for values of n necessary to ob-
tain total probability of 90%, is shown in the column labeled
‘‘rank.’’ Thus, the acceptance region for m50.5 ~analogous

FIG. 6. Standard confidence belt for 90% C.L. central confi-
dence intervals, for unknown Poisson signal mean m in the presence
of a Poisson background with known mean b53.0.

TABLE I. Illustrative calculations in the confidence belt con-
struction for signal mean m in the presence of known mean back-
ground b53.0. Here we find the acceptance interval for m50.5.

n P(num) mbest P(numbest) R rank U.L. central

0 0.030 0.0 0.050 0.607 6
1 0.106 0.0 0.149 0.708 5 A A
2 0.185 0.0 0.224 0.826 3 A A
3 0.216 0.0 0.224 0.963 2 A A
4 0.189 1.0 0.195 0.966 1 A A
5 0.132 2.0 0.175 0.753 4 A A
6 0.077 3.0 0.161 0.480 7 A A
7 0.039 4.0 0.149 0.259 A A
8 0.017 5.0 0.140 0.121 A
9 0.007 6.0 0.132 0.050 A
10 0.002 7.0 0.125 0.018 A
11 0.001 8.0 0.119 0.006 A
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to a horizontal line segment in Fig. 1! is the interval
n5

@

0,6
#

. Because of the discreteness of n , the acceptance
region contains a summed probability greater than 90%; this
is unavoidable no matter what the ordering principle, and
leads to confidence intervals which are conservative.
For comparison, in the column of Table I labeled ‘‘U.L.,’’

we place check marks at the values of n which are in the
acceptance region of standard 90% C.L. upper limits for this
example, and in the column labeled ‘‘central,’’ we place
check marks at the values of n which are in the acceptance
region of standard 90% C.L central confidence intervals.
The construction proceeds by finding the acceptance re-

gion for all values of m, for the given value of b . With a
computer, we perform the construction on a grid of discrete
values of m, in the interval @0, 50# in steps of 0.005. This
suffices for the precision desired ~0.01! in the end points of
confidence intervals. We find that a mild pathology arises as
a result of the fact that the observable n is discrete. When the
vertical dashed line is drawn at some n0 ~in analogy with in
Fig. 1!, it can happen that the set of intersected horizontal
line segments is not simply connected. When this occurs we
naturally take the confidence interval to have m1 correspond-
ing to the bottommost segment intersected, and to have m2
corresponding to the topmost segment intersected.
We then repeat the construction for a selection of fixed

values of b . We find an additional mild pathology, again
caused by the discreteness in n: when we compare the results
for different values of b for fixed n0 , the upper end point m2
is not always a decreasing function of b , as would be ex-
pected. When this happens, we force the function to be non-
increasing, by lengthening selected confidence intervals as
necessary. We have investigated this behavior, and compen-
sated for it, over a fine grid of b in the range @0, 25# in
increments of 0.001 ~with some additional searching to even
finer precision!.
Our compensation for the two pathologies mentioned in

the previous paragraphs adds slightly to our intervals’ con-
servatism, which however remains dominated by the un-
avoidable effects due to the discreteness in n .
The confidence belts resulting from our construction are

shown in Fig. 7, which may be compared with Figs. 5 and 6.
At large n , Fig. 7 is similar to Fig. 6; the background is
effectively subtracted without constraint, and our ordering
principle produces two-sided intervals which are approxi-
mately central intervals. At small n , the confidence intervals
from Fig. 7 automatically become upper limits on m; i.e., the
lower end point m1 is 0 for n<4 in this case. Thus, flip-
flopping between Figs. 5 and 6 is replaced by one coherent
set of confidence intervals ~and no interval is the empty set!.
Tables II–IX give our confidence intervals

@

m1 ,m2# for
the signal mean m for the most commonly used confidence
levels, namely 68.27% ~sometimes called 1s intervals by
analogy with Gaussian intervals!, 90%, 95%, and 99%. Val-
ues in italics indicate results which must be taken with par-
ticular caution, since the probability of obtaining the number
of events observed or fewer is less than 1%, even if m50.
~See Sec. IV C below.!
Figure 8 shows, for n50–10, the value of m2 as a func-

tion of b , for 90% C.L. The small horizontal sections in the
curves are the result of the mild pathology mentioned above,
in which the original curves make a small dip, which we

have eliminated. Dashed portions in the lower right indicate
results which must be taken with particular caution, corre-
sponding to the italicized values in the tables. Dotted por-
tions on the upper left indicate regions where m1 is non-zero.
These corresponding values of m1 are shown in Fig. 9.
Figure 8 can be compared with the Bayesian calculation

in Fig. 28.8 of Ref. @2# which uses a uniform prior for m t . A
noticeable difference is that our curve for n50 decreases as
a function of b , while the result of the Bayesian calculation
stays constant ~at 2.3!. The decreasing limit in our case re-
flects the fact that P(n0um) decreases as b increases. We find
that objections to this behavior are typically based on a mis-
placed Bayesian interpretation of classical intervals, namely
the attempt to interpret them as statements about P(m tun0).

B. Gaussian with a boundary at the origin

It is straightforward to apply our ordering principle to the
other troublesome example of Sec. III, the case of a Gaussian
resolution function @Eq. ~3.1!# for m, when m is physically
bounded to non-negative values. In analogy with the Poisson
case, for a particular x , we let mbest be the physically allowed
value of m for which P(xum) is maximum. Then
mbest5max(0,x), and

P
~

xumbest!5H 1/A2p , x>0,

exp
~

2x2/2
!

/A2p , x,0.
~4.2!

We then compute R in analogy to Eq. ~4.1!, using Eqs. ~3.1!
and ~4.2!:

R
~

x
!

5
P

~

xum
!

P
~

xumbest!
5H exp~2

~

x2m

!

2/2
!

, x>0
exp

~

xm2m

2/2
!

, x,0 .
~4.3!

During our Neyman construction of confidence intervals, R
determines the order in which values of x are added to the
acceptance region at a particular value of m. In practice, this
means that for a given value of m, one finds the interval
@

x1 ,x2# such that R(x1)5R(x2) and

FIG. 7. Confidence belt based on our ordering principle, for
90% C.L. confidence intervals for unknown Poisson signal mean m

in the presence of a Poisson background with known mean b53.0.

3878 57GARY J. FELDMAN AND ROBERT D. COUSINS

to a horizontal line segment in Fig. 1! is the interval
n5

@

0,6
#

. Because of the discreteness of n , the acceptance
region contains a summed probability greater than 90%; this
is unavoidable no matter what the ordering principle, and
leads to confidence intervals which are conservative.
For comparison, in the column of Table I labeled ‘‘U.L.,’’

we place check marks at the values of n which are in the
acceptance region of standard 90% C.L. upper limits for this
example, and in the column labeled ‘‘central,’’ we place
check marks at the values of n which are in the acceptance
region of standard 90% C.L central confidence intervals.
The construction proceeds by finding the acceptance re-

gion for all values of m, for the given value of b . With a
computer, we perform the construction on a grid of discrete
values of m, in the interval @0, 50# in steps of 0.005. This
suffices for the precision desired ~0.01! in the end points of
confidence intervals. We find that a mild pathology arises as
a result of the fact that the observable n is discrete. When the
vertical dashed line is drawn at some n0 ~in analogy with in
Fig. 1!, it can happen that the set of intersected horizontal
line segments is not simply connected. When this occurs we
naturally take the confidence interval to have m1 correspond-
ing to the bottommost segment intersected, and to have m2
corresponding to the topmost segment intersected.
We then repeat the construction for a selection of fixed

values of b . We find an additional mild pathology, again
caused by the discreteness in n: when we compare the results
for different values of b for fixed n0 , the upper end point m2
is not always a decreasing function of b , as would be ex-
pected. When this happens, we force the function to be non-
increasing, by lengthening selected confidence intervals as
necessary. We have investigated this behavior, and compen-
sated for it, over a fine grid of b in the range @0, 25# in
increments of 0.001 ~with some additional searching to even
finer precision!.
Our compensation for the two pathologies mentioned in

the previous paragraphs adds slightly to our intervals’ con-
servatism, which however remains dominated by the un-
avoidable effects due to the discreteness in n .
The confidence belts resulting from our construction are

shown in Fig. 7, which may be compared with Figs. 5 and 6.
At large n , Fig. 7 is similar to Fig. 6; the background is
effectively subtracted without constraint, and our ordering
principle produces two-sided intervals which are approxi-
mately central intervals. At small n , the confidence intervals
from Fig. 7 automatically become upper limits on m; i.e., the
lower end point m1 is 0 for n<4 in this case. Thus, flip-
flopping between Figs. 5 and 6 is replaced by one coherent
set of confidence intervals ~and no interval is the empty set!.
Tables II–IX give our confidence intervals

@

m1 ,m2# for
the signal mean m for the most commonly used confidence
levels, namely 68.27% ~sometimes called 1s intervals by
analogy with Gaussian intervals!, 90%, 95%, and 99%. Val-
ues in italics indicate results which must be taken with par-
ticular caution, since the probability of obtaining the number
of events observed or fewer is less than 1%, even if m50.
~See Sec. IV C below.!
Figure 8 shows, for n50–10, the value of m2 as a func-

tion of b , for 90% C.L. The small horizontal sections in the
curves are the result of the mild pathology mentioned above,
in which the original curves make a small dip, which we

have eliminated. Dashed portions in the lower right indicate
results which must be taken with particular caution, corre-
sponding to the italicized values in the tables. Dotted por-
tions on the upper left indicate regions where m1 is non-zero.
These corresponding values of m1 are shown in Fig. 9.
Figure 8 can be compared with the Bayesian calculation

in Fig. 28.8 of Ref. @2# which uses a uniform prior for m t . A
noticeable difference is that our curve for n50 decreases as
a function of b , while the result of the Bayesian calculation
stays constant ~at 2.3!. The decreasing limit in our case re-
flects the fact that P(n0um) decreases as b increases. We find
that objections to this behavior are typically based on a mis-
placed Bayesian interpretation of classical intervals, namely
the attempt to interpret them as statements about P(m tun0).

B. Gaussian with a boundary at the origin

It is straightforward to apply our ordering principle to the
other troublesome example of Sec. III, the case of a Gaussian
resolution function @Eq. ~3.1!# for m, when m is physically
bounded to non-negative values. In analogy with the Poisson
case, for a particular x , we let mbest be the physically allowed
value of m for which P(xum) is maximum. Then
mbest5max(0,x), and

P
~

xumbest!5H 1/A2p , x>0,

exp
~

2x2/2
!

/A2p , x,0.
~4.2!

We then compute R in analogy to Eq. ~4.1!, using Eqs. ~3.1!
and ~4.2!:

R
~

x
!

5
P

~

xum
!

P
~

xumbest!
5H exp~2

~

x2m

!

2/2
!

, x>0
exp

~

xm2m

2/2
!

, x,0 .
~4.3!

During our Neyman construction of confidence intervals, R
determines the order in which values of x are added to the
acceptance region at a particular value of m. In practice, this
means that for a given value of m, one finds the interval
@

x1 ,x2# such that R(x1)5R(x2) and

FIG. 7. Confidence belt based on our ordering principle, for
90% C.L. confidence intervals for unknown Poisson signal mean m

in the presence of a Poisson background with known mean b53.0.
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Although the word ‘‘conservative’’ in this context may be
viewed by some as desirable, in fact it is an undesirable
property of a set of confidence intervals. Ideal intervals cover
the unknown true value at exactly the stated confidence: 90%
C.L. intervals should fail to contain the true value 10% of the
time. If one desires intervals which cover more than 90% of
the time, the solution is not to add conservatism to the inter-
vals, but rather to choose a higher confidence level. The dis-
creteness of n in the Poisson problem leads unavoidably to
some conservatism, but this is unfortunate, not a virtue.
The Poisson intervals in Figs. 5 and 6 suffer from the

same problems as the Gaussian intervals. First, if physicist X
uses the data to decide whether to use Fig. 5 or Fig. 6, then
the resulting hybrid set can undercover. Second, there is a
well-known problem if, for example, b53.0 and no events
are observed. In that case, the confidence interval is again the
empty set. These problems are solved by the ordering prin-
ciple given in Sec. IV.
For this Poisson case, there is an alternative set of inter-

vals, given by Crow and Gardner @15#, which is instructive
because it requires the full Neyman construction. In con-
structing these intervals, one minimizes the horizontal length
of the acceptance region

@

n1 ,n2# at each value of m. Since n
is a discrete variable, the concept of length in the horizontal
direction can be well defined as the number of discrete
points. Said another way, the points in the acceptance inter-
val at each m are chosen in order of decreasing P(num), until
the sum of P(num) meets or exceeds the desired C.L. ~There
are other technical details in the original paper.! The Crow-
Gardner intervals are instructive because neither Eq. ~2.5!
nor Eq. ~2.6! is satisfied, even as a conservative inequality.
~Recall that x is identified with n in this section.! For
a50.9, P(n,n1um) varies between 0.018 and 0.089, and
P(n.n2um) varies between 0.011 and 0.078, in a manner
dictated by the Neyman construction so that always
P(nP

@

n1 ,n2#um)>0.9. Like Crow and Gardner, we use
Neyman’s construction, but with a different ordering for
choosing the points in the acceptance interval.

IV. NEW INTERVALS FROM AN ORDERING PRINCIPLE
BASED ON LIKELIHOOD RATIOS

A. Poisson process with background

We begin with a numerical example which occurs in the
construction of confidence belts for a Poisson process with
background. The construction proceeds in the manner of Fig.
1, where the measurement x in Fig. 1 now corresponds to the
measured total number of events n .
Let the known mean background be b53.0, and consider

the construction of the horizontal acceptance interval at sig-
nal mean m50.5. Then P(num) is given by Eq. ~3.2!, and is
given in the second column of Table I.
Now consider, for example, n50. For the assumed b53.,

the probability of obtaining 0 events is 0.03 if m50.5, which
is quite low on an absolute scale. However, it is not so low
when compared to the probability ~0.05! of obtaining 0
events with b53.0 and m50.0, which is the alternate hy-
pothesis with the greatest likelihood. A ratio of likelihoods,
in this case 0.03/0.05, is what we use as our ordering prin-
ciple when selecting those values of n to place in the accep-
tance interval.
That is, for each n , we let mbest be that value of the mean

signal m which maximizes P(num); we require mbest to be
physically allowed, i.e., non-negative in this case. Then
mbest5max(0,n2b), and is given in the third column of
Table I. We then compute P(numbest), which is given in the
fourth column. The fifth column contains the ratio

R5P
~

num
!

/P
~

numbest!, ~4.1!

and is the quantity on which our ordering principle is based.
R is a ratio of two likelihoods: the likelihood of obtaining n
given the actual mean m, and the likelihood of obtaining n
given the best-fit physically allowed mean. Values of n are
added to the acceptance region for a given m in decreasing
order of R , until the sum of P(num) meets or exceeds the
desired C.L. This ordering, for values of n necessary to ob-
tain total probability of 90%, is shown in the column labeled
‘‘rank.’’ Thus, the acceptance region for m50.5 ~analogous

FIG. 6. Standard confidence belt for 90% C.L. central confi-
dence intervals, for unknown Poisson signal mean m in the presence
of a Poisson background with known mean b53.0.

TABLE I. Illustrative calculations in the confidence belt con-
struction for signal mean m in the presence of known mean back-
ground b53.0. Here we find the acceptance interval for m50.5.

n P(num) mbest P(numbest) R rank U.L. central

0 0.030 0.0 0.050 0.607 6
1 0.106 0.0 0.149 0.708 5 A A
2 0.185 0.0 0.224 0.826 3 A A
3 0.216 0.0 0.224 0.963 2 A A
4 0.189 1.0 0.195 0.966 1 A A
5 0.132 2.0 0.175 0.753 4 A A
6 0.077 3.0 0.161 0.480 7 A A
7 0.039 4.0 0.149 0.259 A A
8 0.017 5.0 0.140 0.121 A
9 0.007 6.0 0.132 0.050 A
10 0.002 7.0 0.125 0.018 A
11 0.001 8.0 0.119 0.006 A
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With	a	Gaussian	distribution,	 things	proceed	similarly,	with	the	difference	 that	now	one	
takes	non-central	intervals	…	

to a horizontal line segment in Fig. 1! is the interval
n5

@

0,6
#

. Because of the discreteness of n , the acceptance
region contains a summed probability greater than 90%; this
is unavoidable no matter what the ordering principle, and
leads to confidence intervals which are conservative.
For comparison, in the column of Table I labeled ‘‘U.L.,’’

we place check marks at the values of n which are in the
acceptance region of standard 90% C.L. upper limits for this
example, and in the column labeled ‘‘central,’’ we place
check marks at the values of n which are in the acceptance
region of standard 90% C.L central confidence intervals.
The construction proceeds by finding the acceptance re-

gion for all values of m, for the given value of b . With a
computer, we perform the construction on a grid of discrete
values of m, in the interval @0, 50# in steps of 0.005. This
suffices for the precision desired ~0.01! in the end points of
confidence intervals. We find that a mild pathology arises as
a result of the fact that the observable n is discrete. When the
vertical dashed line is drawn at some n0 ~in analogy with in
Fig. 1!, it can happen that the set of intersected horizontal
line segments is not simply connected. When this occurs we
naturally take the confidence interval to have m1 correspond-
ing to the bottommost segment intersected, and to have m2
corresponding to the topmost segment intersected.
We then repeat the construction for a selection of fixed

values of b . We find an additional mild pathology, again
caused by the discreteness in n: when we compare the results
for different values of b for fixed n0 , the upper end point m2
is not always a decreasing function of b , as would be ex-
pected. When this happens, we force the function to be non-
increasing, by lengthening selected confidence intervals as
necessary. We have investigated this behavior, and compen-
sated for it, over a fine grid of b in the range @0, 25# in
increments of 0.001 ~with some additional searching to even
finer precision!.
Our compensation for the two pathologies mentioned in

the previous paragraphs adds slightly to our intervals’ con-
servatism, which however remains dominated by the un-
avoidable effects due to the discreteness in n .
The confidence belts resulting from our construction are

shown in Fig. 7, which may be compared with Figs. 5 and 6.
At large n , Fig. 7 is similar to Fig. 6; the background is
effectively subtracted without constraint, and our ordering
principle produces two-sided intervals which are approxi-
mately central intervals. At small n , the confidence intervals
from Fig. 7 automatically become upper limits on m; i.e., the
lower end point m1 is 0 for n<4 in this case. Thus, flip-
flopping between Figs. 5 and 6 is replaced by one coherent
set of confidence intervals ~and no interval is the empty set!.
Tables II–IX give our confidence intervals

@

m1 ,m2# for
the signal mean m for the most commonly used confidence
levels, namely 68.27% ~sometimes called 1s intervals by
analogy with Gaussian intervals!, 90%, 95%, and 99%. Val-
ues in italics indicate results which must be taken with par-
ticular caution, since the probability of obtaining the number
of events observed or fewer is less than 1%, even if m50.
~See Sec. IV C below.!
Figure 8 shows, for n50–10, the value of m2 as a func-

tion of b , for 90% C.L. The small horizontal sections in the
curves are the result of the mild pathology mentioned above,
in which the original curves make a small dip, which we

have eliminated. Dashed portions in the lower right indicate
results which must be taken with particular caution, corre-
sponding to the italicized values in the tables. Dotted por-
tions on the upper left indicate regions where m1 is non-zero.
These corresponding values of m1 are shown in Fig. 9.
Figure 8 can be compared with the Bayesian calculation

in Fig. 28.8 of Ref. @2# which uses a uniform prior for m t . A
noticeable difference is that our curve for n50 decreases as
a function of b , while the result of the Bayesian calculation
stays constant ~at 2.3!. The decreasing limit in our case re-
flects the fact that P(n0um) decreases as b increases. We find
that objections to this behavior are typically based on a mis-
placed Bayesian interpretation of classical intervals, namely
the attempt to interpret them as statements about P(m tun0).

B. Gaussian with a boundary at the origin

It is straightforward to apply our ordering principle to the
other troublesome example of Sec. III, the case of a Gaussian
resolution function @Eq. ~3.1!# for m, when m is physically
bounded to non-negative values. In analogy with the Poisson
case, for a particular x , we let mbest be the physically allowed
value of m for which P(xum) is maximum. Then
mbest5max(0,x), and

P
~

xumbest!5H 1/A2p , x>0,

exp
~

2x2/2
!

/A2p , x,0.
~4.2!

We then compute R in analogy to Eq. ~4.1!, using Eqs. ~3.1!
and ~4.2!:

R
~

x
!

5
P

~

xum
!

P
~

xumbest!
5H exp~2

~

x2m

!

2/2
!

, x>0
exp

~

xm2m

2/2
!

, x,0 .
~4.3!

During our Neyman construction of confidence intervals, R
determines the order in which values of x are added to the
acceptance region at a particular value of m. In practice, this
means that for a given value of m, one finds the interval
@

x1 ,x2# such that R(x1)5R(x2) and

FIG. 7. Confidence belt based on our ordering principle, for
90% C.L. confidence intervals for unknown Poisson signal mean m

in the presence of a Poisson background with known mean b53.0.
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E
x1

x2
P

~

xum
!

dx5a . ~4.4!

We solve for x1 and x2 numerically to the desired precision,
for each m in a grid with 0.001 spacing. With the acceptance

regions all constructed, we then read off the confidence in-
tervals

@

m1 ,m2# for each x0 as in Fig. 1.
Table X contains the results for representative measured

values and confidence levels. Figure 10 shows the confidence
belt for 90% C.L.

TABLE VI. 95% C.L. intervals for the Poisson signal mean m, for total events observed n0 , for known mean background b ranging from
0 to 5.

n0\b 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0

0 0.00, 3.09 0.00, 2.63 0.00, 2.33 0.00, 2.05 0.00, 1.78 0.00, 1.78 0.00, 1.63 0.00, 1.63 0.00, 1.57 0.00, 1.54
1 0.05, 5.14 0.00, 4.64 0.00, 4.14 0.00, 3.69 0.00, 3.30 0.00, 2.95 0.00, 2.63 0.00, 2.33 0.00, 2.08 0.00, 1.88
2 0.36, 6.72 0.00, 6.22 0.00, 5.72 0.00, 5.22 0.00, 4.72 0.00, 4.25 0.00, 3.84 0.00, 3.46 0.00, 3.11 0.00, 2.49
3 0.82, 8.25 0.32, 7.75 0.00, 7.25 0.00, 6.75 0.00, 6.25 0.00, 5.75 0.00, 5.25 0.00, 4.78 0.00, 4.35 0.00, 3.58
4 1.37, 9.76 0.87, 9.26 0.37, 8.76 0.00, 8.26 0.00, 7.76 0.00, 7.26 0.00, 6.76 0.00, 6.26 0.00, 5.76 0.00, 4.84
5 1.84,11.26 1.47,10.76 0.97,10.26 0.47, 9.76 0.00, 9.26 0.00, 8.76 0.00, 8.26 0.00, 7.76 0.00, 7.26 0.00, 6.26
6 2.21,12.75 1.90,12.25 1.61,11.75 1.11,11.25 0.61,10.75 0.11,10.25 0.00, 9.75 0.00, 9.25 0.00, 8.75 0.00, 7.75
7 2.58,13.81 2.27,13.31 1.97,12.81 1.69,12.31 1.29,11.81 0.79,11.31 0.29,10.81 0.00,10.31 0.00, 9.81 0.00, 8.81
8 2.94,15.29 2.63,14.79 2.33,14.29 2.05,13.79 1.78,13.29 1.48,12.79 0.98,12.29 0.48,11.79 0.00,11.29 0.00,10.29
9 4.36,16.77 3.86,16.27 3.36,15.77 2.91,15.27 2.46,14.77 1.96,14.27 1.62,13.77 1.20,13.27 0.70,12.77 0.00,11.77
10 4.75,17.82 4.25,17.32 3.75,16.82 3.30,16.32 2.92,15.82 2.57,15.32 2.25,14.82 1.82,14.32 1.43,13.82 0.43,12.82
11 5.14,19.29 4.64,18.79 4.14,18.29 3.69,17.79 3.30,17.29 2.95,16.79 2.63,16.29 2.33,15.79 2.04,15.29 1.17,14.29
12 6.32,20.34 5.82,19.84 5.32,19.34 4.82,18.84 4.32,18.34 3.85,17.84 3.44,17.34 3.06,16.84 2.69,16.34 1.88,15.34
13 6.72,21.80 6.22,21.30 5.72,20.80 5.22,20.30 4.72,19.80 4.25,19.30 3.84,18.80 3.46,18.30 3.11,17.80 2.47,16.80
14 7.84,22.94 7.34,22.44 6.84,21.94 6.34,21.44 5.84,20.94 5.34,20.44 4.84,19.94 4.37,19.44 3.94,18.94 3.10,17.94
15 8.25,24.31 7.75,23.81 7.25,23.31 6.75,22.81 6.25,22.31 5.75,21.81 5.25,21.31 4.78,20.81 4.35,20.31 3.58,19.31
16 9.34,25.40 8.84,24.90 8.34,24.40 7.84,23.90 7.34,23.40 6.84,22.90 6.34,22.40 5.84,21.90 5.34,21.40 4.43,20.40
17 9.76,26.81 9.26,26.31 8.76,25.81 8.26,25.31 7.76,24.81 7.26,24.31 6.76,23.81 6.26,23.31 5.76,22.81 4.84,21.81
18 10.84,27.84 10.34,27.34 9.84,26.84 9.34,26.34 8.84,25.84 8.34,25.34 7.84,24.84 7.34,24.34 6.84,23.84 5.84,22.84
19 11.26,29.31 10.76,28.81 10.26,28.31 9.76,27.81 9.26,27.31 8.76,26.81 8.26,26.31 7.76,25.81 7.26,25.31 6.26,24.31
20 12.33,30.33 11.83,29.83 11.33,29.33 10.83,28.83 10.33,28.33 9.83,27.83 9.33,27.33 8.83,26.83 8.33,26.33 7.33,25.33

TABLE VII. 95% C.L. intervals for the Poisson signal mean m, for total events observed n0 , for known mean background b ranging
from 6 to 15.

n0\b 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

0 0.00, 1.52 0.00, 1.51 0.00, 1.50 0.00, 1.49 0.00, 1.49 0.00, 1.48 0.00, 1.48 0.00, 1.48 0.00, 1.47 0.00, 1.47
1 0.00, 1.78 0.00, 1.73 0.00, 1.69 0.00, 1.66 0.00, 1.64 0.00, 1.61 0.00, 1.60 0.00, 1.59 0.00, 1.58 0.00, 1.56
2 0.00, 2.28 0.00, 2.11 0.00, 1.98 0.00, 1.86 0.00, 1.81 0.00, 1.77 0.00, 1.74 0.00, 1.72 0.00, 1.70 0.00, 1.67
3 0.00, 2.91 0.00, 2.69 0.00, 2.37 0.00, 2.17 0.00, 2.06 0.00, 1.98 0.00, 1.93 0.00, 1.89 0.00, 1.82 0.00, 1.80
4 0.00, 4.05 0.00, 3.35 0.00, 3.01 0.00, 2.54 0.00, 2.37 0.00, 2.23 0.00, 2.11 0.00, 2.04 0.00, 1.99 0.00, 1.95
5 0.00, 5.33 0.00, 4.52 0.00, 3.79 0.00, 3.15 0.00, 2.94 0.00, 2.65 0.00, 2.43 0.00, 2.30 0.00, 2.20 0.00, 2.13
6 0.00, 6.75 0.00, 5.82 0.00, 4.99 0.00, 4.24 0.00, 3.57 0.00, 3.14 0.00, 2.78 0.00, 2.62 0.00, 2.48 0.00, 2.35
7 0.00, 7.81 0.00, 6.81 0.00, 5.87 0.00, 5.03 0.00, 4.28 0.00, 4.00 0.00, 3.37 0.00, 3.15 0.00, 2.79 0.00, 2.59
8 0.00, 9.29 0.00, 8.29 0.00, 7.29 0.00, 6.35 0.00, 5.50 0.00, 4.73 0.00, 4.03 0.00, 3.79 0.00, 3.20 0.00, 3.02
9 0.00,10.77 0.00, 9.77 0.00, 8.77 0.00, 7.77 0.00, 6.82 0.00, 5.96 0.00, 5.18 0.00, 4.47 0.00, 3.81 0.00, 3.60
10 0.00,11.82 0.00,10.82 0.00, 9.82 0.00, 8.82 0.00, 7.82 0.00, 6.87 0.00, 6.00 0.00, 5.21 0.00, 4.59 0.00, 4.24
11 0.17,13.29 0.00,12.29 0.00,11.29 0.00,10.29 0.00, 9.29 0.00, 8.29 0.00, 7.34 0.00, 6.47 0.00, 5.67 0.00, 4.93
12 0.92,14.34 0.00,13.34 0.00,12.34 0.00,11.34 0.00,10.34 0.00, 9.34 0.00, 8.34 0.00, 7.37 0.00, 6.50 0.00, 5.70
13 1.68,15.80 0.69,14.80 0.00,13.80 0.00,12.80 0.00,11.80 0.00,10.80 0.00, 9.80 0.00, 8.80 0.00, 7.85 0.00, 6.96
14 2.28,16.94 1.46,15.94 0.46,14.94 0.00,13.94 0.00,12.94 0.00,11.94 0.00,10.94 0.00, 9.94 0.00, 8.94 0.00, 7.94
15 2.91,18.31 2.11,17.31 1.25,16.31 0.25,15.31 0.00,14.31 0.00,13.31 0.00,12.31 0.00,11.31 0.00,10.31 0.00, 9.31
16 3.60,19.40 2.69,18.40 1.98,17.40 1.04,16.40 0.04,15.40 0.00,14.40 0.00,13.40 0.00,12.40 0.00,11.40 0.00,10.40
17 4.05,20.81 3.35,19.81 2.63,18.81 1.83,17.81 0.83,16.81 0.00,15.81 0.00,14.81 0.00,13.81 0.00,12.81 0.00,11.81
18 4.91,21.84 4.11,20.84 3.18,19.84 2.53,18.84 1.63,17.84 0.63,16.84 0.00,15.84 0.00,14.84 0.00,13.84 0.00,12.84
19 5.33,23.31 4.52,22.31 3.79,21.31 3.15,20.31 2.37,19.31 1.44,18.31 0.44,17.31 0.00,16.31 0.00,15.31 0.00,14.31
20 6.33,24.33 5.39,23.33 4.57,22.33 3.82,21.33 2.94,20.33 2.23,19.33 1.25,18.33 0.25,17.33 0.00,16.33 0.00,15.33
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assume that the experiment is to search for transformations
between muon type neutrinos, n

m

, and electron type neutri-
nos, ne , and that the influence of other types of neutrinos can
be ignored. We hypothesize that the weak eigenstates un

m

&

and une& are linear superpositions of two mass eigenstates
un1& and un2& ,

une&5un1&cos u1un2&sin u ~5.1!

and

un
m

&

5un2&cos u2un1&sin u , ~5.2!

and that the mass eigenvalues for un1& and un2& are m1 and
m2 , respectively. Quantum mechanics dictates that the prob-
ability of such a transformation is given by the formula
@2,16#

P
~

n

m

!ne!5sin2
~

2u

!

sin2S 1.27Dm2L
E D , ~5.3!

where P is the probability for a n

m

to transform into a ne , L
is the distance in km between the creation of the neutrino
from meson decay and its interaction in the detector, E is the
neutrino energy in GeV, and Dm25um1

22m2
2u in (eV/c2)2.

The result of such an experiment is typically represented
as a two-dimensional confidence region in the plane of the
two unknown physical parameters, u, the rotation angle be-
tween the weak and mass eigenstates, and Dm2, the ~posi-
tive! difference between the squares of the neutrino masses.
Traditionally, sin2(2u) is plotted along the horizontal axis
and Dm2 is plotted along the vertical axis. An example of
such a plot is shown in Fig. 11, based on a toy model that we
develop below. In this example, no evidence for oscillations
is seen and the confidence region is set as the area to the left
of the curve in this figure.

B. Proposed technique for determining confidence regions

The problem of setting the confidence region for a neu-
trino oscillation search experiment often shares all of the
difficulties discussed in the previous sections. The variable

sin2(2u) is clearly bounded by zero and one. Values outside
this region can have no possible interpretation within the
theoretical framework that defines the unknown physical pa-
rameters. Yet consider an experiment searching in a region
of Dm2 in which oscillations either do not exist or are well
below the sensitivity of the experiment. Such an experiment
is typically searching for a small signal of excess ne interac-
tions in a potentially large background of ne interactions
from conventional sources and misidentified n

m

interactions.
Thus, it is equally likely to have a best fit to a negative value
of sin2(2u) as to a positive one, provided that the fit to Eq.
~5.3! is unconstrained.
Typically, the experimental measurement consists of

counting the number of events in an arbitrary number of bins
@17# in the observed energy of the neutrino and possibly
other measured variables, such as the location of the interac-
tion in the detector. Thus, the measured data consist of a set
N[

$

ni%, together with an assumed known mean expected
background B[

$

bi% and a calculated expected oscillation
contribution T[

$

m iusin2(2u),Dm2%.
To construct the confidence region, the experimenter must

choose an ordering principle to decide which of the large
number of possible N sets should be included in the accep-
tance region for each point on the sin2(2u)-Dm2 plane. We
suggest an ordering principle identical to the one suggested
in Sec. IV, namely the ratio of the probabilities,

R5
P

~

NuT
!

P
~

NuTbest!
, ~5.4!

where Tbest„sin2(2u)best ,Dmbest
2 … gives the highest probability

for P(NuT) for the physically allowed values of sin2(2u) and
Dm2.
In the Gaussian regime, x

2522 ln(P), and so this ap-
proach is equivalent to using the difference in x

2 between T
and Tbest , i.e.,

R8[Dx

25
(

i
F ~

ni2bi2m i!
2

s i
2 2

~

ni2bi2mbesti!
2

s i
2 G ,

~5.5!

FIG. 10. Plot of our 90% confidence intervals for the mean of a
Gaussian, constrained to be non-negative, described in the text.

FIG. 11. Calculation of the confidence region for an example of
the toy model in which sin2(2u)50. The 90% confidence region is
the area to the left of the curve.
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The	CLs	method

The	CLs	method	 is	based	on	a	simple	test	statistic

where		

CLs =
CLs+b

CLb

CLs+b = Ps+b(X < X
obs

); CLb = Pb(X < X
obs

)


