
Pregnant with twins: 
fraternal or identical? 

Fraternal: 2/3 of all cases

Identical: 1/3 of all cases
What is the probability of 
identical twins IF both boys 
in sonogram? 

Example: a problem of male twins (Efron, 2003)



P (Identical|Both boys) =
P (Both boys|Identical)

P (Both boys)
P (Identical)

Answer provided by Bayes theorem



P (Identical) = 1/3

P (Fraternal) = 2/3

P (Both boys|Identical) = 1/2

P (Both boys|Fraternal) = 1/4

P (Both boys) = P (Both boys|Identical)P (Identical)

+ P (Both boys|Fraternal)P (Fraternal)

= (1/2)(1/3) + (1/4)(2/3) = 1/3

P (Identical|Both boys) =
P (Both boys|Identical)

P (Both boys)
P (Identical)

=
(1/2)

(1/3)
(1/3) = 1/2



A simple example with urns
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Here we choose a ball as follows:

1. We choose the urn first

2. We draw a ball from that urn

What is the probability of drawing one red ball? 



P(A) = P(B) = 1/2 (probability of choosing either A or B)

P(G|A) =  1/4 (probability of drawing a yellow ball from A)

P(R|A) =  3/4 (probability of drawing a red ball from A)

P(G|B) =  1/2 (probability of drawing a yellow ball from B)

P(R|B) =  1/2 (probability of drawing a red ball from A)

and therefore

P(R) = P(R|A)·P(A) + P(R|B)·P(B) 

= (3/4)·(1/2) + (1/2)·(1/2) = 5/8 = 0.625
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Si sceglie una pallina nel modo seguente:  

1.  Si sceglie un vaso 

2.  Si estrae una pallina 

Qual è la probabilità di estrarre una pallina rossa? 

Figure 3.1: Two boxes that contain di↵erent numbers of marked balls.

P (Y |B, I) = 1/2; P (R|B, I) = 1/2

Now we play the reverse game with the help of a friend. The friend
hides the names of the boxes and places them in front of us. We extract one
ball from the box on the left and we use all our prior knowledge and Bayes’
theorem to infer its name. Clearly, at the outset – i.e., a priori, given the
information I that we initially have – the probability that the box on the
left is actually box A is just p0(L = A|I) = 1/2 , because the two boxes A
and B are equally probable. Now we start the game by extracting the first
ball.

Extraction 1: the ball is red. Using the prior information we find that
the probabilities of extraction of a red or a yellow ball from any of the two
boxes (the evidences) are

p0(R) = P (R|L = A, I)p0(L = A, I)+P (R|L = B, I)p0(L = B, I) = 5/8 = 0.625

p0(Y ) = P (Y |L = A, I)p0(L = A, I)+P (Y |L = B, I)p0(L = B, I) = 3/8 = 0.375

Therefore, using Bayes’ theorem, the posterior probability for A is

p1(L = A|R, I) =
P (R|L = A, I)

p0(R)
p0(L = A|I) =

3/4

5/8
(1/2) = 3/5 = 0.6

where P (R|L = A, I) = P (R|A, I) is the likelihood.

Here, p0(L = A|I) is our prior probability that the left box is A, while
after data collection, that is after the extraction of the ball and use of Bayes’
theorem, we find the posterior probability p1(L = A|R, I). Notice that the
posterior probability is greater than 0.5: the choices (A or B) are no longer
equally likely: p1(L = A|R, I) = 0.6 and p1(L = B|R, I) = 0.4.



24

After the first extraction the ball is reinserted in the box from which it
was taken and we are ready for the next extraction.

Extraction 2: we extract a red ball, again. Then we use the old poste-
rior probabilities p1(L = A, I) and p1(L = B, I) as the new prior values and
we find

p1(R) = P (R|L = A, I)p1(L = A, I) + P (R|B, I)p1(L = B, I) = 0.65

p1(Y ) = P (Y |L = A, I)p1(L = A, I) + P (Y |B, I)p1(L = B, I) = 0.35

and a repeated application of Bayes’ theorem yields:

p2(L = A|{R, R}, I) =
P (R|L = A, I)

p1(R)
p1(L = A|R, I) = 0.692308

We see that the new extraction has further increased our confidence that
the left box is A.

How do we continue this procedure? We only have to generalize the
previous steps to the generic n-th extraction.

Extraction n: in the generic case we consider the n-th extraction and
we do not specify the colors of the extractions, we just indicate the whole
series of extraction data with {Dk}k=1,n. Using the posterior probabilities
of step n � 1

pn�1(L = A|{Dk}k=1,n�1, I) and pn�1(L = B|{Dk}k=1,n�1, I)

as the new prior probabilities we find the evidence at the n-th extraction

pn(Dn|{Dk}k=1,n�1, I) =

= P (Dn|L = A, I)pn�1(L = A|{Dk}k=1,n�1, I)

+ P (Dn|L = B, I)pn�1(L = B|{Dk}k=1,n�1, I) (3.8)

and from Bayes’ theorem we find the new posterior probabilities

pn(L = A|{Dk}k=1,n, I) =
P (Dn|L = A, I)

pn(Dn|{Dk}k=1,n�1, I)
pn�1(L = A|{Dk}k=1,n�1, I)

(3.9a)

pn(L = B|{Dk}k=1,n, I) =
P (Dn|L = B, I)

pn(Dn|{Dk}k=1,n�1, I)
pn�1(L = B|{Dk}k=1,n�1, I)

(3.9b)

Further data pinpoint with even greater confidence this result that we
found at the second extraction. Figure 3.2 shows the result of a simulation
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with 100 extractions where the first two coincide with those that we analyzed
at the beginning:

R, R, R, Y, Y, R, R, Y, Y, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, Y,

R, R, R, R, R, Y, R, R, R, R, Y, R, R, R, R, Y, R, R, R, Y, R, R, R, R, R,

R, Y, R, R, Y, R, R, R, R, R, R, Y, R, R, R, R, Y, R, R, Y, R, Y, R, R, Y,

Y, R, R, Y, R, R, R, Y, R, R, Y, R, R, R, R, R, R, R, R, R, R, Y, Y, R, R

Figure 3.2 shows the corresponding posterior probabilities

pn(L = A|{Dk}k=1,n, I)

calculated at each step: these probabilities converge towards 1 and it is clear
that the left box must be box A4. In this case the question “is A the box on
the left?” could be answered with yes or no, and our present answer is yes.
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Figure 3.2: Posterior probability pn(L = A|{Dk}k=1,n, I) vs. n in the simu-
lated experiment described in the text. Since in this simulation the left box
is actually A, there is a prevalence of red balls, and after some extractions
– and some hesitation, because of some yellow balls – the probability that
the left box is actually A in our inference converges to 1.

It is also interesting to note that in this simulation we estimate the

4The posterior probabilities

pn(L = B|{Dk}k=1,n, I)

are complementary to
pn(L = A|{Dk}k=1,n, I)

and converge to 0.

posterior probabilities 
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Figure 3.3: Posterior probability pn(L = A|{Dk}k=1,n, I) vs. n in the sim-
ulated experiment described in the text with a much lower initial prior
(p0(L = A|I) = 0.1). The data are the same as in figure 3.2 and the ini-
tial extractions with several yellow balls produce confusing results, however,
eventually the data wash out the information of the initial biased prior,
and the probability that the box on the left is actually A in our inference
converges again to 1.

A has N � 1 red balls”. Each one of these cases corresponds to a di↵erent
“scientific hypothesis” ANR in this weird “science of boxes”.

How do we solve the problem of finding how many red balls are in the
box? We start with Bayes’ theorem, we remark that the di↵erent hypotheses
ANR are “mutually exclusive”, and that we can apply the form (3.7) of Bayes’
theorem:

P (ANR |D, I) =
P (D|ANR , I)P

n
P (D|An, I)P (An)

P (ANR |I) (3.10)

If we have no special reason to prefer a given value of ANR , then we can
choose an initial prior that is a discrete uniform distribution:

P (ANR |I) = 1/N.

Finally, we note that if there are NR red balls in the box then the probability
of extracting a red ball in a single draw is just NR/N , i.e., the likelihood
function for drawing a red or a yellow ball in a single extraction is

P (R|ANR , I) = NR/N ; P (Y |ANR , I) = 1 � NR/N.

Now that we have all the mathematical tools, we can perform an exper-
iment by repeatedly drawing balls (and putting them back) and updating



A new game

Now there is just one box with N balls and an unknown number NR of red balls. 

Problem: use repeated extractions to estimate the number of red balls. 

Now the likelihood function is given by the set of probabilities

and we use Bayes' theorem for many competing and mutually exclusive hypotheses

with a uniform initial prior   
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posterior probabilities

pn(L = A|{Dk}k=1,n, I)

according to equation (3.9a) as soon as new data are available and this is
an example of iterative Bayesian inference.

3.1.2 The initial prior: a critical issue in the Bayesian frame-

work

In the example, we have assumed that at the beginning we are completely
ignorant of which box is on the left, and we have taken prior probabilities

p0(L = A|I) = p0(L = B|I) = 1/2,

but what would happen if we received some incorrect intelligence from an-
other friend watching the whole scene? We might have chosen di↵erent prior
probabilities like

p0(L = A|I) = 0.1; p0(L = B|I) = 0.9,

which strongly bias our preference for B being on the left. Initially, this
bias adversely a↵ects our inference, but as we collect more data, the wrong
information is washed out, as shown in figure 3.3.

The prior probability incorporates all the knowledge that we have at the
start of the inference process, however it may be quite subjective and can
actually “pollute” our inference with wrong assumptions. And yet, as we
collect more data we find again the correct result.

Summarizing, we see that Bayesian inference provides a useful, nearly
automatic way of adding new information by means of Bayes’ theorem, but
can be contaminated by wrong information, and sometimes we may need
large amounts of data to wash this out. This works – at least in principle
– in many practical cases, as demonstrated by the Bernstein-Von Mises
Theorem, a deep result that we do not prove in this little book.

3.1.3 Moving on to a discrete set of hypotheses

In this section, we play a new game with just one box A, where A contains
an unknown number NR of red balls out of N � 1 balls, so that NR ranges
over N values from 0 to N � 1. This means that we must take

P (Y |NR, I) = (1 � NR/N); P (R|NR, I) = NR/N,

and that instead of just two instances – “the left box is A” and “the left
box is B” – as in the previous case, we have now N competing cases – ”the
box A has 0 red balls”, ”the box A has 1 red balls”, etc., up to ”the box
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our posterior probabilities at each and every step. The following sequence
is the result of one experiment with N = 50:

Y, R, Y, R, R, Y, Y, Y, Y, Y, Y, Y, R, Y, Y, R, Y, R, Y, Y, Y, R, Y, Y, R,

Y, Y, Y, Y, Y, Y, Y, Y, Y, R, Y, R, Y, Y, R, Y, Y, Y, Y, R, Y, R, R, R, Y,

R, Y, R, Y, Y, Y, R, Y, Y, R, Y, Y, Y, R, Y, Y, Y, Y, Y, Y, Y, Y, R, R, R,

Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, R, R, Y, Y, Y, Y, Y, Y, Y, R, Y, Y, Y, Y, R.

Figure 3.4 shows the posterior distribution after 2, 20, and 80 draws,
and it emphasizes the increasing precision with which the incoming data do
bracket the actual value of NR. Can you guess from the data above what
this value is? And can you provide a measure of the uncertainty in this
determination?

The answer to the first question is one of the important recipes of the
Bayesian statistical framework: in the present case, we see that after 80
draws (bottom panel, figure 3.4), the discrete probability distribution peaks
at NR = 14 and we take this as the estimate of NR. This is a Bayesian
Maximum A Posteriori (MAP) estimate. And indeed, in this experiment,
the hidden value was NR = 14, and the Bayesian estimate picks the correct
result.

The probability associated with the peak values grows as the width de-
creases, and figure 3.5 shows this for NR = 24 (upper panel) and NR = 14
(lower panel): the lower panel shows that the posterior probability grows
steadily as more data are gathered. The upper panel instead shows that the
value NR = 24 is disfavoured and probability drops close to zero as more
and more data are accumulated.

The views of figures 3.4 and 3.5 can be combined into one, to obtain
a global view of how the posterior distribution evolves as new data are
collected and analyzed in the Bayesian framework. This is illustrated in
figures 3.6 and 3.7.

As we bask in the light of our statistical success, a friend comes along and
looks at our notebook and at our plots with some disgust and an ill-concealed
smirk on his face. We are very good friends as long as statistics is not
mentioned, he is a strong supporter of Frequentism, a powerful competitor
of the Bayesian view, and he criticizes our results: “How can you really
believe that there is something like a probability distribution of a true value?
There cannot be any such thing, the number of balls is simply what it is,
it is a fixed number. I do not only reject the initial prior distribution as
an arbitrary construct, but also this absurd idea that a fixed number can
fluctuate! You are denying the reality of the world around you!”

Indeed, the frequentist approach to statistics entails a di↵erent world-
view. A frequentist loves to think that a scientific theory deals with objects
that have a real counterpart in Nature and that a “correct” theory must

Experiment: 100 extractions  (with N = 50), 
what is the estimate of NR?  
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Figure 3.4: Discrete posterior distribution for the problem of one box with
an unknown number of red balls. Upper panel: the posterior distribution
after 2 draws; middle panel: the posterior distribution after 20 draws; bot-
tom panel: the posterior distribution after 80 draws. As the number of
draws increases, our experiment provides more and more information, and
the width of the posterior distribution decreases. This decrease of the width
of the posterior distribution means that our confidence in the result is cor-
respondingly larger.

have parameters that are firmly anchored to this substrate of reality. The
frequentist also thinks that the partly subjective character of the prior dis-
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Figure 3.5: Posterior probability associated with NR = 24 (upper panel) and
NR = 14 (lower panel). As more and more data are collected, the posterior
probability of NR = 24 drops to zero, while that of NR = 14 has a steady
upward trend.

tribution spoils the objectivity of Science. So, what is it that defines the
frequentist faith? It all starts with the mathematical definition of proba-
bility: if an event corresponds to exactly n cases out of N , the probability
of this event is p = n/N . As an example, consider 10 coin throws. There
are

�10
3

�
= 120 sequences of repeated throws in which you can obtain 3

heads, and each valid sequence corresponds to one case out of 210, so that
n/N =

�10
3

�
/210 = 120/1024. In a real experiment, the total number of
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In particular, it is possible to show that the probability of fluctuations

30

Figure 3.5: Posterior probability associated with NR = 24 (upper panel) and
NR = 14 (lower panel). As more and more data are collected, the posterior
probability of NR = 24 drops to zero, while that of NR = 14 has a steady
upward trend.
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Figure 3.6: Combined representation that shows the evolution of the prob-
ability distribution as more and more data are collected. The blue line
corresponds to the posterior probability distribution shown in the bottom
panel of figure 3.4.

(of any given size) about the mean decreases more and more, and eventually
vanishes. Moreover, for many well-behaved cases, the important “central
limit theorem” shows that the fluctuations have a Gaussian distribution
(see, e.g., [26]).

In practice, it turns out that the frequentist results are often quite close
to the those of the rival Bayesian approach. Figure 3.8 shows the running
sample mean, n/N , where n is the number of red balls found in the first N

draws: the running mean, which is the frequentist estimate, is superposed
on the density plot of the evolving posterior distribution, and in this case
the two estimates coincide throughout the series of repeated draws.


