Example: a problem of male twins (Efron, 2003)

Fraternal: 2/3 of all cases

Identical: 1/3 of all cases

Pregnant with twins:
fraternal or identical?

What is the probability of
identical twins IF both boys
in sonogram?




Answer provided by Bayes theorem

P(Both boys|Identical)
P(Both boys)

P(Identical|Both boys) = P(Identical)




P(Identical) = 1/3
P(Fraternal) = 2/3
P(Both boys|Identical) = 1/2
P(Both boys|Fraternal) = 1/4

P(Both boys)

P(Both boys|Identical) P(Identical)
+ P(Both boys|Fraternal) P(Fraternal)

= (1/2)(1/3) + (1/4)(2/3) = 1/3

P(Both boys|Identical)
P(Both boys)

_a/
= (/3 =172

P(Identical|Both boys) = P(Identical)




A simple example with urns

O 20

Here we choose a ball as follows:
1. We choose the urn first
2. We draw a ball from that urn

What is the probability of drawing one red ball?



P(A) = P(B) = 1/2 (probability of choosing either A or B)

P(G|A) = 1/4 (probability of drawing a yellow ball from A)
P(R|A) = 3/4 (probability of drawing a red ball from A)
P(G|B) = 1/2 (probability of drawing a yellow ball from B)
P(R|B) = 1/2 (probability of drawing a red ball from A)

and therefore

P(R) =P(R|A)-P(A) + P(R|B)-P(B)
= (3/4)-(1/2) + (1/2)-(1/2) = 5/8 = 0.625



Now we play the reverse game with the help of a friend. The friend
hides the names of the boxes and places them in front of us. We extract one
ball from the box on the left and we use all our prior knowledge and Bayes’
theorem to infer its name. Clearly, at the outset — i.e., a priori, given the
information I that we initially have — the probability that the box on the
left is actually box A is just po(L = A|I) = 1/2 , because the two boxes A
and B are equally probable. Now we start the game by extracting the first
ball.

Extraction 1: the ball is red. Using the prior information we find that
the probabilities of extraction of a red or a yellow ball from any of the two
boxes (the evidences) are

po(R) = P(R|L=A,1py(L=A,1)+P(R|L=B,I)py(L=B,I)=5/8=0.625
po(Y)=PYI|L=A,1py(L=A1)+P(Y|L=B,I)po(L=DB,I)=3/8=0.375
Therefore, using Bayes’ theorem, the posterior probability for A is

P(R|L = A, )
po(R)

where P(R|L = A,I) = P(R|A,I) is the likelihood.

po(L = A|l) = %(1/2) =3/5=0.6

p1(L=A|R,I) =



After the first extraction the ball is reinserted in the box from which it
was taken and we are ready for the next extraction.

Extraction 2: we extract a red ball, again. Then we use the old poste-
rior probabilities p1 (L = A, I) and p;(L = B, I) as the new prior values and

we find
p1(R) = P(R|L = A, Ip1(L=AI)+ P(R|B,I)p;(L =B,I)=0.65
m(Y)=PY|L=A1p(L=A,1)+ P(Y|B,I)p1(L=B,I)=0.35
and a repeated application of Bayes’ theorem yields:

P(R|L = A, I)
p1(R)

p2(L = A{R, R}, I) = pi(L = A|R,I) = 0.692308



How do we continue this procedure? We only have to generalize the
previous steps to the generic n-th extraction.

Extraction n: in the generic case we consider the n-th extraction and
we do not specify the colors of the extractions, we just indicate the whole
series of extraction data with {Dj}x=1,. Using the posterior probabilities
of stepn —1

Pn-1(L = A{Dk}r=1,n-1,1) and pp_1(L = B|{Di}r=1,n-1,1)

as the new prior probabilities we find the evidence at the n-th extraction

pn(Dn’{Dk}k:Ln—hI) —
= P(Dyn|L = A, I)pn—1(L = A{ Dk }r=1,n-1,1)
+ P(Dn|L = B, I)pp—1(L = B{Dg }k=1,n-1,1)

and from Bayes’ theorem we find the new posterior probabilities

P(D,|L = A, T)

(L= A{D ey, ) = (L= AD Y ey 1.1
poll = APt D = 0 D eyt = AP =t D)
P(D,|L =B,
pu(L = BI{Dy} s, I) = — L Pn ) o (L = BUD e 1 I)

pn(Dn‘{Dk;}kzl,n—h I)



100 extractions ...
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Posterior probability p,(L = A|{Dk}r=1n,I) vs. n in the sim-
ulated experiment described in the text with a much lower initial prior
(po(L = A[I) = 0.1).



A new game
Now there is just one box with N balls and an unknown number N, of red balls.

Problem: use repeated extractions to estimate the number of red balls.

Now the likelihood function is given by the set of probabilities

P(Y|Ng,I)=(1—Ngr/N); P(R|Ng,I)= Ngr/N
and we use Bayes' theorem for many competing and mutually exclusive hypotheses

PUANID.1) = o Py Al

with a uniform initial prior

P(An,|I) = 1/N
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Posterior probability associated with N = 24 (upper panel) and
Npg = 14 (lower panel). As more and more data are collected, the posterior
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Figure 3.6: Combined representation that shows the evolution of the prob- Figure 3.7: Another representation - a density plot - equivalent to the 3D
ability distribution as more and more data are collected. The blue line plot shown in figure 3.6. While probability corresponds to a height in figure
corresponds to the posterior probability distribution shown in the bottom 3.6, here it corresponds to a colour shown in the colour scale on the right.

panel of figure 3.4.



