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Abstract

Radiotherapeutic normal tissue injury can be viewed as two simultaneously ongoing and interacting processes. The first has many features

in common with the healing of traumatic wounds. The second is a set of transient or permanent alterations of cellular and extracellular

components within the irradiated volume. In contrast to physical trauma, fractionated radiation therapy produces a series of repeated insults

to tissues that undergo significant changes during the course of radiotherapy. Normal tissue responses are also influenced by rate of dose

accumulation and other factors that relate to the radiation therapy schedule. This article reviews the principles of organised normal tissue

responses during and after radiation therapy, the effect of radiation therapy on these responses, as well as some of the mechanisms underlying

the development of recognisable injury. Important clinical implications relevant to these processes are also discussed. q 2002 Elsevier

Science Ireland Ltd. All rights reserved.
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1. Introduction

Radiotherapeutic injury is a complex process that occurs in

organised tissues, i.e. tissues which comprise a large number

of interacting, mutually dependent cellular lineages, as well

as a multitude of biologically active extracellular molecules.

This perspective is in some contrast to the more traditional

(minimalist) approach that considers injury to individual cell

lines that can be modelled by cell culture. All organised

tissues are capable of mounting reparative responses to

injury. This review examines some of these responses and

draws attention to some unique phenomena that occur as a

result of repetitive injuries – the series of exposures to ionis-

ing radiation that make up a course of radiotherapy.

The response of normal tissues to radiotherapy can be

viewed as comprising two partially interacting components,

each of which is very complex. The first is a process that in

many, but not all, respects resembles the healing of trau-

matic wounds, while being subject to perturbation by the

radiation treatment. The second is a set of specific injuries

that affect virtually all cellular and extracellular components

within the irradiated volume, and that may be responsible

for the progression of injury over a period of many years.

The radiotherapy ‘wound’ differs in interesting ways

from acute traumatic, thermal or chemical wounds, in

which structural tissue damage occurs instantaneously, or

nearly so. In contrast to these types of injury, exposure to

ionising radiation produces a burst of free radicals, which,

while obviously not re-arranging tissue components imme-

diately, not only causes DNA damage, but also alters

proteins, lipids, carbohydrates, and complex molecules.

While the amount of energy deposited is minimal, each

exposure inflicts considerable injury. Another important

characteristic of radiation therapy is that it inflicts a series

of small tissue insults as each fraction is delivered. In many

tissues, each fraction thus contributes to accumulating

inflammatory cell recruitment as well as to the accumulation

of direct tissue injury. Furthermore, each fraction affects

tissue that already exhibits a dynamic spectrum of cellular

injury, ongoing repair, inflammation, and other pathophy-

siologic responses. Therefore, with repetitive radiation

exposure, many cellular and molecular responses will be

substantially exacerbated, suppressed, or substantially

altered compared to the situation after a single exposure to

radiation or traumatic injury.

Rate of dose accumulation (RDA) is important to all of

these processes and sometimes quite independently of frac-

tion size. First, the timing and magnitude of the inflammatory

response to radiotherapy depends on RDA, since inflamma-

tory responses do not ‘fade’ (or cease) within hours of each
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radiation exposure as ‘sublethal’ cellular damage generally

does. Therefore when a course of radiotherapy involves rapid

dose accumulation (i.e. is ‘dose intense’), regardless of how it

is fractionated, the inflammatory response also accumulates

quickly. This may be important because aspects of the

inflammatory response are capable of greatly amplifying

radiation-induced microvascular injury. Second, suppression

of reparative tissue responses to injury depends on RDA,

since such responses, be they re-epithelialisation or the

formation of ‘granulation’ tissue, include vigorous prolifera-

tion of several cell lineages. Therefore, the more rapidly dose

is delivered, regardless of fraction size, the more effective the

suppression is.

While what appears as full ‘healing’ of the sub-acute

radiotherapy injury may ensue, perturbation of the repara-

tive processes affect the integrity of the repair. It is well

known that healed traumatic wounds ‘remodel’ continu-

ously for years following injury. In contrast, the viability

of irradiated tissues and/or their capacity to remodel is often

compromised by lasting cellular dysfunction or changes in

the supporting (mesenchymal) stroma. Inflammation may

further stress irradiated epithelial lined tissues if failure of

the reparative process results in insufficient epithelial barrier

function. Coupled with this, and sometimes compounded by

self-perpetuating ‘reactive’ fibrosis, progressive parenchy-

mal cellular depletion with ‘replacement’ fibrosis completes

a picture that is recognised as delayed radiation injury.

The main part of this review deals with organised tissue

responses to radiotherapy, the effect of radiotherapy on

these responses, and the development of recognisable

injury. The final part of the review discusses some important

clinical implications of these observations. To assist readers

with some of the analogies and comparisons that are drawn

in this review, a simplified schematic diagram of processes

involved in healing of traumatic wounds is presented in Fig.

1. While it will be immediately apparent that, there is little

requirement for haemostasis and tissue closure by scar

formation in radiotherapy injury as there is in a traumatic

wound, it will be equally obvious that many processes that

contribute to healing of traumatic wounds are also involved

in early and delayed normal tissue responses to radiation.

Examination of radiotherapeutic injury from this perspec-

tive is helpful because it provides explanations both for the

clinical and pathological features of early and delayed inju-

ries. An understanding of the mechanisms that contribute to

organised tissue injury together with an appreciation of the

reparative processes that occur in response to this injury,

may assist in the development of avoidance and prevention

strategies.

2. Part 1 – normal tissues responses to radiotherapy

2.1. The induction of a ‘wound healing’ response

Higher vertebrates respond to traumatic tissue injury by

initiating a sequence of overlapping events that includes

activation of the coagulation system, inflammation, epithe-

lial regeneration, granulation tissue formation, and matrix

deposition and remodelling. This complex process is orche-

strated by a large number of interacting molecular signals,

including cytokines, chemokines, and growth factors.

While the response to radiotherapeutic injury of normal

tissues differ in many ways from a traumatic wound healing

response, many processes are similar and/or occur in a simi-

lar sequence. For example, as indicated above, an important

difference between radiation injury and most traumatic

wounds is the accumulating and repetitive nature of the

former. Because of ongoing cellular regeneration and

increasing inflammation during a course of radiation ther-

apy, the ‘normal’ tissue that is included in the radiation field

changes dramatically from the time of delivery of the first

fraction to the delivery of the last fraction. In other words,

the normal tissue that is irradiated at the beginning of the

radiotherapy course is qualitatively very different from the

‘normal’ tissue that is irradiated towards the end.

The following sections describe aspects of the response of

normal tissue to radiation injury, focusing primarily on

similarities and differences between the responses to radia-

tion injury and the response seen after physical trauma.

2.2. Endothelial cell (EC) changes and activation of the

coagulation system

Activation of the coagulation system is the initial

response to virtually all forms of traumatic injury. While

radiation injury does not physically disrupt blood vessels,

the coagulation system may also become activated in struc-

turally intact vessels by direct functional radiation effects.

For example, radiation-generated reactive oxygen species

may cause immediate inactivation of thrombomodulin

(TM) on the EC surface, a process which is greatly poten-

tiated in the presence of inflammation [1,49]. Subsequent

endothelial effects of radiation include apoptosis [117], and

altered expression of adhesion molecules, tissue factor, von

Willebrand factor, prostacyclin, angiotensin converting

enzyme, plasminogen activator, thromboxane, and TM

[57,73,134,161,171,172,186]. Down-regulation of EC

nitric oxide synthase (NOS), TM, and plasminogen activa-

tor (PA) activity may be permanent, thus creating a perma-

nently pro-coagulant EC surface. These processes, in

concert with other endothelial effects, may initiate and

‘drive’ the processes recognised as delayed radiation

injury.

Activation of the coagulation system increases the forma-

tion of the serine protease, thrombin. Thrombin, plays a

central role in coagulation by removing fibrinopeptides A

and B from fibrinogen and activating platelets, thus forming

the fibrin–platelet clot. However, thrombin is also an impor-

tant regulator of cell proliferation, inflammation, and tissue

remodelling. For example, thrombin regulates endothelial

permeability [26], chemotaxis of neutrophils and monocytes
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[10,16], and TGF-b1 production [182] by mechanisms that

are independent of coagulation. Specific inhibitors of throm-

bin decrease smooth muscle cell proliferation, migration,

and collagen production in vitro and in vivo [112,123].

Most of the ‘non-coagulant’ thrombin effects are mediated

through activation of receptors that belong to the family of

protease-activated receptors (PAR), of which PAR-1 is the

best studied and likely the most relevant biologically.
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Table 1 summarises some of the important direct non-

lethal effects of radiation on ECs.

2.3. Inflammation

2.3.1. Direct inflammatory effects

Some aspects of radiation-induced inflammation result

from direct non-lethal radiation effects. An example is the

first phase of the erythematous skin reaction in humans,

which commences in a matter of hours after relatively

small radiation exposures a vasodilation often undetectable

by the naked eye can be measured using sensitive instru-

mentation [144]. The magnitude of the effect varies across

species [74,124].

The mechanisms by which radiation causes increased

vascular permeability and vasodilation are becoming better

understood. These include direct radiation effects on mast

cells [118] and ECs resulting in the generation of thrombin

and the release of histamine and prostaglandins I2 and E2

(PGI2 and PGE2), facilitated by neutrophil adhesion to the

endothelial surface in the hours following radiation expo-

sure [38,104,116,121]. Activation of the complement and

kinin cascades may also contribute [22]. Cobra venom

factor depletion of complement, for example, has been

shown to suppress both increased vascular permeability

and subsequent fibrosis in the skin [158].

After physical trauma, the acute inflammatory response is

triggered by activation of stress-sensitive kinases and tran-

scription factors that control the synthesis of pro-inflamma-

tory cytokines, such as TNF-a, IL-1, IL-8, and IFN-g.

Subsequently, termination of inflammation occurs as a

result of the short half-life of pro-inflammatory cytokines

and by production of anti-inflammatory cytokines, such as,

IL-4, IL-10, IL-13, and TGF-b [83]. Situations, in which

inflammation does not adequately resolve, such as radiation

injury, appear to involve aberrant cytokine pathways or

chronic overproduction of certain cytokines, resulting in

uncontrolled matrix accumulation and fibrotic sequelae.

During radiation therapy, many of the inflammatory

phenomena that evolve in response to each radiation frac-

tion does not dissipate within 24 h, thus leading to an accu-

mulating response (‘fractionated inflammatory insult’).

Furthermore, the processes involved in leucocyte adhesion

appear to be both dose and dose-rate dependent. In an in

vivo rodent model Molla et al. found that P-selectin and

intercellular adhesion molecule-1 (ICAM-1) expression

were increased to a greater extent in rats irradiated at high

dose-rate than in rats irradiated at medium dose-rate to the

same total dose [104]. Ross et al. found that expression of
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Table 1

Important direct non-lethal effects of radiation on endothelial cells

Plasma membrane effects:

X Production of reactive oxygen intermediates (ROIs) [109] leads to:

V Irreversible inactivation of thrombomodulin

V Inhibition of circulating 5HT removal by pulmonary ECs;

V Increased phospholipase A2 (PLA2) activity, leading to:

Release of arachidonic acid (AA)

Generation of prostanoids including thromboxane (TXA2)

Initial decrease in prostacyclin (PGI2) production in first 4 h of exposure followed by a temporary increase

Accumulation of diacylgycerol (DAG)

X Activation of tyrosine–specific protein kinases [109] leads to:

Activation of protein kinase C (PKC) (see below)

X Decrease in NOS and PGI2 activity [148] leads to:

Failure to oppose vasoconstricting influences and platelet aggregation;

Failure to inhibit smooth muscle cell (SMC) proliferation

X Decrease in transglutaminase activity [85] has implications for:

Cell growth and differentiation

X Downregulation of thrombomodulin [127] promotes:

A failure to inhibit intravascular coagulation hence induces a ‘procoagulatory’ environment

X Downregulation of plasminogen activator activity [155] leads to:

A decrease in fibrinolytic activity and promotes a procoagulatory environment

Intracellular effects:

X Activation of protein kinase C (PKC) [61,142] leads to:

Transcription of tumour necrosis factor a (TNF-a) gene;

Transcription of early response genes C-jun and C-fos

X Activation of early response genes [81] leads to:

Activation of the AP-1 and nuclear factor kB (NFkB) transcription factors

X Activation of NFkB [12,58,108] leads to:

Cell surface expression of leucocyte adhesion molecules P-Selectin, E-Selectin and ICAM-1, etc.

X Luminal release of:

Von Willebrand factor (vWF) [59];

Platelet derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) [181]



interleukin-1b (IL-1b) and IL-6 mRNAs were increased at

high but not at low dose rates [132]. Hallahan et al. demon-

strated that neutrophil adhesion is promoted by the expres-

sion of the adhesion molecule E-Selectin at low fractional

doses (,2 Gy), but by ICAM-1 at higher fractional doses

(,5 Gy) [58,60].

The main (or secondary) erythematous reaction in most

epithelial surfaces is likely due to an inflammatory response

to a combination of lethal, functional, and indirect cellular

injury. At the light microscopic level, acutely irradiated

human tissues exhibit margination of neutrophils and peri-

vascular infiltration [41,48,102,110,126,136,145]. Radia-

tion-induced EC apoptosis may cause increased

permeability and microvascular thrombosis [42,135]. Leuco-

cytes are chemotactically drawn to the site of injury, adhere

to the endothelium, transmigrate into the tissue, and release

proteolytic enzymes and reactive oxygen species. Apoptosis

or necrosis of other cells and subsequent inflammation of

these cell layers also contribute to increased vascular perme-

ability and vasodilation. Inflammation further exacerbates

the radiation response by amplifying endothelial dysfunction

and by increasing the levels of cytokines and growth factors,

such as transforming growth factor b (TGF-b), thus delaying

the process of re-epithelialisation.

As already noted, the rate at which increases in vascular

permeability and vasodilation dissipate after each fractional

dose is relevant to the clinical manifestations that appear

during a fractionated course of radiation. Single (large) dose

studies, such as those cited above, indicate that the rate of

dissipation is to be measured in many hours, perhaps days,

rather than the few hours taken for sub-lethal radiation

damage to repair. The issue of how the vasodilation and

increased permeability accumulates during a course of

radiation is a complex one. Using daily fractions near

2 Gy, erythema in human skin measured using reflectance

spectrophotometry approximately parallels accumulating

(biologically effective) dose. The accumulation does not

proceed at a steady rate, however, because vasoconstrictive

influences of uncertain mechanism oppose the process of

vasodilation in the second and third weeks of radiotherapy

[144]. More important, at fractional doses both below and

above 2 Gy/day, the level of maximal erythema measured

during or after radiotherapy considerably exceeds the

predictions of the linear quadratic (LQ) formula. Therefore,

RDA is quite clearly an important determinant of inflamma-

tion and microvascular injury.

Relatively little laboratory research has focused directly

on the effects of fraction size and overall time on the magni-

tude of the overall inflammatory response. Hauer-Jensen’s

group has provided indirect evidence that both are important

in the intestine [128]. Major increases in TGF-b expression

at both 2 and 26 weeks occurred when fraction size was

doubled, but overall time was maintained. Even more

dramatic increases were observed, however, when overall

time was halved, but fraction size was maintained. While a

very much less dramatic simultaneous trend in the same

direction was observed for histological radiation injury

score, previous work from this group has shown unequivo-

cally that both overall time and fraction size affect the level

of structural injury [62,63,92,93].

2.3.2. Suppression of the inflammatory response

As Trott and Kamprad have pointed out in reviewing the

anti-inflammatory effects of radiation [153] the pro- and

anti-inflammatory effects of radiotherapy are strongly

dose- and schedule dependent. While suppression of inflam-

matory processes occurs at low radiation doses, the doses

that comprise typical high dose fractionated courses of

radiotherapy given with the intention of tumour control

provoke inflammation, but, as stated earlier, suppress

some of the normal reparative processes that occur in

response to injury. As Trott and Kamprad have also pointed

out, however, the precise circumstances that determine

whether inflammatory response is predominantly down or

up-regulated have not been fully elucidated and certainly

deserve further research.

For example, the suppressive effects of a course of frac-

tionated radiotherapy on the radiosensitive inflammatory

infiltrate remains unresolved. A reduction in macrophage

activity and suppression of early wound matrix formation

might be expected [99,129]. However, the leucocytic infil-

trate component of the inflammatory response is derived

from the circulation and therefore replenished during regio-

nal radiotherapy. Any suppression of the inflammatory

process will therefore be limited. Of interest is the recent

discovery that the inflammatory leucocytic infiltrate

includes circulating ‘fibrocytes“ capable of expressing

collagen type 1 as well as the cytokines and chemokines

necessary to amplify the inflammatory response [20].

In addition, regional radiotherapy produces a lymphope-

nia as early as the first week of the treatment course due to

killing of lymphocytes that circulate through the irradiated

region during irradiation. However, the effects of lympho-

penia on the acute inflammatory response, the subsequent

reparative processes in which lymphocytes play a role or,

indeed, any of the possible chronic inflammatory processes

that occur after radiation are unknown at present.

2.4. Immediate effects of radiotherapy on epithelial surfaces

Cells in the basal and suprabasal layers in the epithelial

surfaces are rapidly killed during radiotherapy. However,

the evolution of clinically visible injury is determined by

inflammatory responses in underlying supportive tissues

and by the accelerated repopulative response in surviving

epithelial stem cells.

2.4.1. Epithelial injury and repopulation

The vigorous repopulation of the epithelial surface that

commences during radiotherapy appears to start after an

initial period of growth arrest, which for the human orophar-

ygeal mucosa is approximately 7 days in patients treated at
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2 Gy/day [35]. The trigger to acceleration of regeneration is

unknown, but work from Trott and Kummermehr indicates

that it may be related to a decrease in the density of epider-

mal cells below a threshold of approximately 60% [154].

Expression of connexin 43 (a gap junction protein) in mouse

skin [98] which changes as keratinocyte density decreases

may play a role in the regenerative response in this tissue.

Clinical studies of cellular repopulation in response to radio-

therapeutic injury confirm that the mucosal surface of the

upper aerodigestive passage exhibits a remarkable capacity

to regenerate. In at least one-third of cases, the process

appears to offset cell killing inflicted at a rate of 2 Gy/day

[32]. The mechanisms that enable such a massive increase in

proliferation are uncertain. Dörr has suggested that the

normal restriction to ‘asymmetric’ stem cell division is

lifted and a switch to symmetrical division brings about

the major increase in growth fraction that is necessary

[34]. In addition cells normally destined to exfoliate without

division, or make only one division, regain the capacity to

divide twice or thrice. The mechanisms that regulate contin-

ued proliferation during radiotherapy remain unclear. In the

mouse tongue the processes appear highly regulated,

enabling proliferation to exactly match the continued deple-

tion caused by daily fractions of different sizes [36]. Human

rectal mucosal biopsy data from Hovdenak et al. [72] also

seem to suggest a well-orchestrated response capable of

maintaining limited barrier protection.

At dose accumulation rates exceeding conventional frac-

tionation, i.e. 2 Gy/day, 10 Gy/week, the clinical manifesta-

tions of epithelial cellular depletion appear earlier and the

severity of the clinical reaction is greater. This is because

the rate at which surviving epithelial cells are killed exceeds

the maximum rate at which replenishment of the cellular

population by regeneration can take place. Epithelial denu-

dation will become prolonged if cellular depletion is

profound and if disturbance of barrier function adds to the

underlying inflammation or further inhibits the ongoing

reparative processes. Pre-clinical experiments with acceler-

ated fractionation of rat intestine (2.8 Gy once daily versus

twice daily versus thrice daily) also showed results consis-

tent with this notion [62].

As shown in Fig. 1 wound contraction can hasten the

process of re-epithelialisation of traumatic wounds by redu-

cing the area requiring epithelial coverage. Suppression of

the evolving wound matrix by radiation would not be

expected to assist the process of contraction. Indeed Yanase

et al. [183] noted disruption of the actin microfilaments

within wound fibroblasts of their model following radiation

and suggested that this could lead to impaired wound

contraction.

2.4.2. Injury to the epithelial basement membrane zone

(BMZ) and loss of barrier function

Destruction of the BMZ substantially retards re-epithelia-

lisation [147] and therefore prolongs the period of compro-

mise to the normal barrier function of the epithelial surface.

This exposes already injured and inflamed underlying struc-

tures to further injury, contributing to further inflammation

and fibrosis. Severe acute injury with ulceration that fails to

heal completely and therefore becomes chronic has been

dubbed ‘consequential’ injury, by Peters et al. [119].

However, data suggest that ‘consequential’-type injury

may occur after acute injury that does not lead to (detect-

able) non-healing epithelial injury. While the ‘threshold’

and ‘ceiling’ levels for ‘consequential’-type injury has not

been established, disruption of the epithelial basement

membrane and breakdown of the barrier function of the

epithelium substantially increases the risk. An example of

temporary breakdown of the basement membrane and

epithelial barrier leading to late mucosal effects came

from the Trans-Tasman Radiation Oncology Group

(TROG) 91.01 head and neck trial [31]. In this trial 70 Gy

in 35 daily 2 Gy fractions over 7 weeks was compared with

59.4 Gy in 33 twice daily 1.8 Gy fractions over 3.5 weeks. It

was anticipated that patients treated on the conventional arm

would experience significantly more late mucosal effects

because they had received higher doses. Although this

expectation was confirmed in patients experiencing the

shortest acute confluent reactions, no difference between

treatment arms was observed amongst patients experiencing

the longest confluent acute reactions. This suggested that

additional mechanisms contributed to late effects in the

accelerated arm. Direct evidence of the importance of the

mucosal barrier was provided by Hauer-Jensen and cowor-

kers [64,166,169], who showed that a reduction of both

early and delayed rat ileal radiation injury was achieved

by the surgical or pharmacologic ablation of pancreatic

secretion.

Acute injuries that do not result in epithelial denudation

also activate mechanisms that contribute directly to delayed

injury in some instances [27]. In the enteropathy model

referred to above, delayed injuries in animal groups experi-

encing minimal acute epithelial injuries were also fractiona-

tion insensitive and strongly treatment time dependent. In

addition, there are limited clinical data suggesting that acute

injuries that do not involve serious disruption of the base-

ment membrane can lead to ‘consequential’ late effects.

Bentzen and Overgaard drew attention to an increased rate

of skin telangiectasia in patients treated post-operatively for

breast cancer who developed moist desquamation [13,14].

Turesson et al. confirmed this observation but found that

patients who had experienced severe erythema, but not
moist desquamation, also had increased rates of telangiec-

tasia [156].

2.5. Effects of radiotherapy on the early wound matrix

High dose radiotherapy does not evoke the rapid granula-

tion tissue response that occurs in the context of acute trau-

matic wounds. First, the gross tissue destruction,

haemorrhage, hypoxia, and bacterial infiltration that

promote granulation tissue formation after traumatic injury
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are much less evident after radiotherapy injury. Further-

more, fibrogenesis and angiogenesis are inhibited by radia-

tion in a dose- and fractionation-dependent manner. Indeed,

suppression of the granulation response compromises surgi-

cal wound healing and has been an important consideration

in designing appropriate surgery/radiotherapy combinations

[150]. While normal granulation tissue is rarely seen in

histological sections of tissues undergoing ‘acute’ radiation

reactions, it may be seen occasionally in delayed epithelial

ulcers (Fajardo 2001, personal communication).

The early wound matrix in humans is particularly vulner-

able to radiation in the first 5 days after traumatic wounding,

and irradiation during this period significantly increases the

risk of wound healing complications [5,114,150]. In

contrast, experimental studies in mice and guinea pigs

[15,50], as well as clinical studies [66,115], have shown

that the wound healing process is affected little if radiation

is delayed for 7 or more days after the wound. Depletion of

fibroblasts by radiation prior to wounding also has an impor-

tant negative impact on wound healing. Eighteen Gray

delivered before surgical wounding in a mouse model had

the same deleterious effects on wound breaking strength

whether delivered 1 h or 95 days prior to wounding [50].

However, the impact was reduced by fractionation. Wound

healing following pre-operative radiation is compromised

by single doses of 10 Gy administered shortly before

surgery [80] but well fractionated courses using total

doses of 45–50 Gy, 4–6 weeks prior to radiation do not

[75,105,159,178].

In vitro, ECs are as radiosensitive as smooth muscle cells

[17] and radiation inhibits EC proliferation [45]. In vivo,

radiation induces EC apoptosis and inhibits angiogenesis in

normal tissues [86,122]. Archambeau et al. [6,7] found that

the ECs of the subpapillary capillary plexus are sensitive to

radiation in a dose dependent manner. Abrupt decreases in

cellularity follow only days after epithelial regeneration

after single radiation doses and this is associated with

increases in vessel diameter and occlusion of the lumen.

After a conventionally fractionated course, however, micro-

vascular changes follow 6 weeks later, indicating that frac-

tionation and/or RDA is important to the expression of this

type of injury. Archambeau found no evidence of microvas-

cular endothelial proliferation in response to radiation. The

rat superficial epigastric vascular pedicle model of Doyle et

al., [33] however, has provided some of the most direct data

on the effects of radiation on the neovascular process. Two

doses of 3 Gy at 0 and 24 h after implantation had little

effect on neovascularisation, but a third at 48 h had a signif-

icant effect. Subsequent doses up to 30 Gy caused limited

additional early suppressive effect. It is of interest that, in

this model, three daily fractions of 3 Gy prior to implanta-

tion did not suppress the neovascular process significantly.

2.6. Processes contributing to delayed injury

The mechanisms that lead to delayed, or ‘chronic’, radia-

tion injury likely involve depletion of epithelial and stromal

cells in combination with perturbation of the reparative

processes mentioned above. Hence, there is little reason to

believe that the injurious effects of radiotherapy are

mediated exclusively by cellular depletion. Indeed, signifi-

cant non-lethal effects on ECs and fibroblasts may persist

long after the early normal tissue reactions have regressed.

In addition, as already noted, damage to the normal barrier

function of irradiated epithelial surfaces may also contribute

to ongoing sub-epithelial inflammation and fibrosis.

The respective contributions of ‘reparative’ (‘replace-

ment’) and ‘reactive’ processes to the pathogenesis of radia-

tion fibrosis remain uncertain in most instances. While

replacement fibrosis occurs in response to parenchymal

cell loss and undoubtedly contributes to radiation fibrosis

in many situations, the molecular events that mediate this

process have not been fully characterised. Fajardo has

pointed out repeatedly that there is a distinct lack of inflam-

matory infiltrate in many human radiotherapy fibroses.

‘Reactive’ processes may make the strongest contribution

to the development of post-radiation fibrosis in tissues

where a breakdown of the epithelial barrier is an important

feature and some degree of chronic inflammation persists.

The clinical evidence of a dissociation between the

presence of telangiectasis and subcutaneous fibrosis in

patients undergoing radiotherapy after mastectomy reported

by Bentzen and Overgaard [13,14] is interesting. It indicates

that the mechanisms responsible are not common to both

and that there is not a single genetic basis for both sets of

processes. The observation that telangiectasis is far more

common after acute radiation injuries in which the BMZ

and epithelial barriers are disrupted is relevant in this

respect. Coupled with the findings by Turesson and Thames

that radiation-induced telangiectasia of human skin is treat-

ment time dependent [156,157], these observations suggest

that inflammatory damage to the microvasculature during

acute injury have an important role in the development of

telangiectasia. However, the same mechanisms, which are

also associated with suppression of normal reparative

responses, play a limited role in the post-irradiation fibrosis

seen at many sites.

At the present time, the exact nature of the radiation-

induced non-lethal cellular effects and their role in contri-

buting to delayed normal tissue injury in vivo are incomple-

tely understood. Some of the proposed mechanisms by

which non-lethal (functional) cellular effects may contribute

to delayed radiation injury are summarised in Table 2.

2.6.1. Endothelial cells

Vascular sclerosis was recognised as a characteristic

feature of late radiation injury only 4 years after the discov-

ery of the X-ray [48]. At the microscopic level, a variety of

long term changes have been recognised in heavily irra-

diated vessels of all sizes [124]. The capillary network is

particularly vulnerable to radiotherapy. Best seen in sequen-

tial observation studies are obstruction of the capillary
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lumen by swelling of the EC cytoplasm [124,125,164,187],

EC detachment of localised groups of proliferating ECs

[69,89], thrombosis, rupture of the capillary wall, and loss

of entire capillary segments [39]. Telangiectasia is a

common late phenomenon that may be due to loss of capil-

lary pressure control resulting from smooth muscle cell

(SMC) loss in proximal or distal vessels, or to changes in

the surrounding extracellular matrix. Loss of ECs may also

contribute to telangiectasia, as reflected by an onion skin

like appearance of new basement membrane laid over the

previous membrane [135]. Subendothelial and adventitial

fibroses with partial or complete replacement of the media

by an acellular acidophilic material known as ‘hyaline’

[136,141,143,187] are the most frequently observed lesions

in arterioles and small diameter arteries. In medium sized

arteries intimal fibrosis is the most common lesion, resulting

in variable degrees of concentric or eccentric luminal

narrowing. Fibrotic plaques occur in segments throughout

the irradiation region and are often associated with some

degree of medial and adventitial fibrosis. Almost pathog-

nomic of radiation injury are the presence in the intima of

lipid laden ‘foam cells’.

Law [94] was among the first to propose that vascular

sclerosis and radiation fibrosis were related to EC damage.

Subsequent research has provided substantial evidence

supporting the notion that radiation, in addition to inducing

apoptosis at high doses, also induces long-standing phenoty-

pic changes in ECs and that these changes cause, or at least

contribute to, further pathological changes. As mentioned

previously, radiation induces a pro-coagulant and pro-

inflammatory environment. However, these changes not

only promote clotting and leukocyte recruitment, but also

induce a plethora of receptor-mediated cellular changes.

For example, thrombin, by activating protease-activated

receptors on a variety of cell types, potently upregulates

the expression of adhesion molecules and chemokines [77];

increases the production of inflammatory and fibrogenic

cytokines and growth factors, including TGF-b [182];

increases proliferation of fibroblasts and smooth muscle

cells [19]; promotes fibroblast-mediated collagen lattice

contraction [120]; and increases collagen expression [21].

Given the heterogeneity of the vascular tree, it is likely

that the nature and consequences of EC dysfunction will

differ in vessels of different sizes and at different sites, as

many structural observations suggest. In addition to the

many coagulant, mitogenic, pro-inflammatory, and pro-

fibrogenic effects of locally generated thrombin, vessel

wall injury and interstitial fibrosis may also be influenced

by circulating vasoactive and potentially toxic molecules

such as angiotensin II (Ang II) and low density lipoprotein

(LDL)-cholesterol. In fact, the foam cells referred to above

are only seen in the presence of hypercholesterolaemia

[4,43,44,82,90,97]. Ang II upregulates the TGF-b2 receptor

in many cell lineages, which may be an important mechan-

ism by which it contributes to vascular sclerosis and inter-

stitial fibrosis [175].

Despite the very obvious compromises to the vasculature

that radiotherapy produces, which for many years were

considered to be responsible for the varied late radiothera-

peutic injuries that occur in all organised tissues [137], it is

still not known whether tissue ischaemia results in or is a

consequence of radiation injury. Hopewell et al. cite

evidence from various studies that atrophy, fibrosis, and

necrosis in the rat brain and the pig skin are preceded by

vascular injury [68] but aside from the increased risk of

myocardial infarction that accompanies mediastinal irradia-

tion, ischaemic tissue injury in humans appears limited. A

recent study by Vujaskovic et al. suggest that radiation-

induced hypoxia may contribute to the perpetuation of

delayed radiation pneumonitis [163].

The extent to which revascularisation in heavily irra-

diated tissues is possible is uncertain at present. Radia-

tion-damaged ECs may respond unsatisfactorily to

angiogenic stimuli and subsequent wound healing is

compromised. It is conceivable that neo-angiogenic

responses originate in ECs of larger vessels rather than in

the microvasculature (Archambeau 2000, personal commu-

nication).

2.6.2. Fibroblasts and myofibroblasts

The term ‘reactive’ fibrosis is frequently used to describe

phenomena that occur during wound matrix formation and
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Table 2

Proposed (non-replacement) mechanisms of radiation fibrosis

1 Repeated tissue exudates lead to fibrin deposition, which does not resolve due to deficiency in tissue plasminogen activator (PA) [40]

2 EC injury leads to plasma exudate which stimulates collagen synthesis [2,94,95]

3 Detachment of ECs leads to bFGF activation and loss of mitogenic control of SMCs, which then overproduce collagen [56]

4 Radiation-induced EC expression of TNF-a [109] and PDGF [180] which stimulate SMC proliferation and production of collagen

5 Downregulation of EC NOS activity allows unopposed SMC proliferation [148]

6 Downregulation of EC thrombomodulin, enables SMC activation by thrombin with assistance of TGF-b [185]

7 Prolonged epithelial barrier breakdown leads to chronic subepithelial inflammation, including TGF-b production which drives fibroblast and

SMC proliferation [91] TGF-b activation is promoted by mast cell hyperplasia in the gut [52,53,103]

8 Proliferation of alveolar macrophages and type II pneumocytes which express TGF-b, leading to pulmonary fibrosis [138]

9 Permanent phenotypic alterations induced in fibroblasts by radiation lead to overproduction of matrix [24,139]

10 Alteration of the normal fibroblast population profile by radiation leads to an accumulation of post-mitotic fibrocytes which produce matrix

elements [130]



chronic inflammation. A number of factors, including

thrombin and activated macrophages, indirectly promote

deposition of collagen and other matrix elements by recruit-

ing, transforming, and stimulating fibroblasts, myofibro-

blasts, and smooth muscle cells. In addition, high

radiation doses permanently affect fibroblasts and other

cells involved in tissue repair. The significance of sub-lethal

damage of local fibroblasts is illustrated by the observation

that injection of syngeneic fibroblast into irradiated tissue

restores wound healing to normal [51,87]. Clinical studies

corroborate these experimental findings. Skin fibroblasts

obtained up to 18 years after radiotherapy exhibit reduced

growth rates compared to fibroblasts obtained from unirra-

diated control areas [140,146]. Rudolph et al. examined

ultrastructural changes in skin biopsies from patients with

long term radiation-induced fibrotic skin sequelae [139]. In

their study, irradiated wounds bled normally and vascular

density appeared to be normal. However, most fibroblasts

exhibited ultrastructural changes, suggesting that persisting

radiation-induced genetic abnormalities in these cells may

be involved in the mechanisms of fibrosis. The cells

appeared to be myofibroblasts phenotypically, an observa-

tion subsequently supported by Delanian et al. [24]. While

these myofibroblasts did not overexpress TGF-b or tissue

inhibitor of metalloproteinase, they had shorter lifespan,

reduced growth on stimulation, and lower superoxide

dismutase and catalase activity levels than ‘healthy’ fibro-

blasts [24]. In addition to skin, myofibroblasts are found in

many other irradiated tissues, especially in areas of heavy

collagen deposition [170]. As in the healing of traumatic

wounds, myofibroblasts in irradiated tissues express TGF-

b and collagen [166,170], as well as PAR-1 [168] and PAR-

2 [167], consistent with a role for thrombin and mast cell

proteases in the mechanisms of fibrosis.

The fact that significant fibrosis occurs in heavily irra-

diated regions in which the fibroblast population is both

dysfunctional and depleted and that subsequent wound heal-

ing is compromised in these regions is intriguing. The work

of Rodemann and Bamberg [130] may provide clues to this

apparent paradox, suggesting that TGF-b1, which is over-

expressed in irradiated tissues, induces fibroblast prolifera-

tion via an expansion of the progenitor fibroblast pool as

well as a premature differentiation of progenitor fibroblasts

into post-mitotic fibrocytes. These fibrocytes have the capa-

city to produce extracellular matrix components in far

greater quantity than progenitor fibroblasts. If fibroblasts

in heavily irradiated tissues, including the myofibroblasts

described by Rudolph and Delanian, are post-mitotic but

retain the capacity to produce collagen in abundance, it

would help explain their ability to produce replacement

fibrosis while being unable to proliferate in response to a

new wound.

Radiation fibrosis may be considered a form of injury

response where there is a continuous signal for connective

tissue deposition and/or failure of the down-regulatory

processes that normally serve to terminate fibrogenesis.

The pig model of Martin et al. provides some insights into

these processes [100,101,162,176,177]. In their model, a

very high single dose of radiation is used to create a radio-

necrotic cutaneous ulcer. While the relevance of this model

to normal tissue fibrosis in humans is debatable, it has

produced data compatible with the existence of prolonged

abnormalities in multiple cell types and processes. Studies

in this model also suggest the presence of two distinct fibro-

tic ‘compartments’. The peripheral ‘compartment’, situated

at the periphery of the fibrotic mass, contains inflammatory

infiltrates of macrophages and neutrophils, actin-positive

(myo-)fibroblasts, and pronounced neo-angiogenic activity

[162]. The extracellular matrix from this ‘compartment’ is

rich in type III collagen and fibronectin [177]. The fibro-

blasts cultured from these areas, in contrast to those grown

from unirradiated skin or from radiation-damaged human

skin, appear capable of indefinite division [101]. The second

(central) ‘compartment’ is much less active and is well

vascularised. It is also less cellular and is composed of

morphologically normal fibroblasts. Mature collagen (type

I) and the sulphated proteoglycans, heparan and dermatan

sulphate, make up the extracellular matrix in the central

‘compartment’ [177].

2.6.3. TGF-b and mast cells

There is strong evidence linking TGF-b to radiation fibro-

sis in many organs [11,47,88,128,165]. TGF-b1 stimulates

mesenchymal cell proliferation and collagen production,

and inhibits epithelial cell proliferation. TGF-b1 also acts

as a potent immunosuppressor by inhibiting the prolifera-

tion and/or function of T-cells, B-cells, and natural killer

cells [78,79,131], and by inhibiting the expression of mono-

cyte chemoattractant protein (MCP)-1 and TNF-a receptors

on ECs. TGF-b is also the strongest chemotactic factor

known for mast cells [55] and observation which may

have mechanistic relevance in radiation fibrosis.

Mast cell hyperplasia frequently accompanies radiation

fibrosis, temporally follows TGF-b overexpression, and has

been quantified in radiation pneumonitis [160,173] and

enteropathy animal models [113,128]. The relative signifi-

cance of various mast cell mediators in specific fibrotic

processes in vivo, particularly in the context of radiation

fibrosis, is largely unknown. Histamine, TGF-b, fibroblast

growth factor (FGF), IL-4, and TNF-a are released by acti-

vated mast cells and may stimulate fibroblast proliferation

and collagen formation. Direct and indirect effects of

heparin, generation of angiotensin II by chymase, and acti-

vation of PAR-2 by tryptase are other mechanisms with

potential relevance to radiation fibrosis.

Hauer-Jensen’s group has provided direct evidence for

the mechanistic involvement of both mast cells [184] and

TGF-b [185] in intestinal radiation fibrosis. Their studies

also provided evidence of important crosstalk between mast

cells and TGF-b during radiation fibrosis development.

While intestinal radiation fibrosis was significantly attenu-

ated in mast cell deficient rats compared to mast cell compe-
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tent littermate controls, TGF-b expression levels were simi-

lar in the two types of animals [184]. Conversely, scaven-

ging active TGF-b by administration of a soluble TGF-b

type II receptor fusion protein significantly attenuated

intestinal radiation fibrosis, but did not affect the level of

mast cell hyperplasia [185].

2.7. Impact of other chronic pathological processes on

normal tissue responses to radiotherapy

The ability of radiotherapy to induce endothelial dysfunc-

tion and apoptosis may explain the frequent clinical obser-

vations of increased late radiation injury in chronic medical

conditions in which endothelial dysfunction is a feature. For

example, diabetes, peripheral vascular disease, hyperten-

sion, and obesity are associated with increased likelihood

of delayed radiation-induced bowel morbidity [18,65]. Clin-

ical observations also suggest that development of vascular

disease after radiation therapy may exacerbate subclinical

chronic radiation injury and thereby trigger its clinical

presentation. Experimental studies addressing the influence

of vascular injury on radiation toxicity have largely

addressed phenomena rather than mechanisms. Radiation-

induced spinal cord injury [8,9] and fatal brain injury [71]

are increased in rats with renovascular hypertension. It is of

interest that radiation, while aggravating atherosclerosis

[84,97], induces myointimal fibrosis but not the develop-

ment of foam cells [4,82,90,97] or atheroma [43,44] in the

absence of hypercholesterolaemia.

Patients with scleroderma and other ‘collagen vascular

diseases’ such as rheumatoid arthritis and systemic lupus

erythematosus also appear to have an increased incidence

and severity of delayed normal tissue radiation toxicity

[25,106,133]. The mechanisms underlying these interac-

tions have not been identified.

3. Part 2 – clinical implications

The recognition that non-lethal functional cellular inju-

ries and tissue responses such as inflammation, reparative

processes, and fibrosis contribute to delayed radiation injury

over and above the contribution made by progressive cellu-

lar depletion leads to a revised framework within which

radiation injury may be classified [28] (see Table 3).

This recognition is compatible with the recent observa-

tion by Jung et al. [76] that the rate of development of late

effects does not plateau out over time. However, it does

enable additional processes to be targeted for therapeutic

intervention.

If cell killing was exclusively responsible for delayed

injury, as suggested by the ‘target cell theory’ [179] then

efforts to avert it would rely entirely on: (1) identification of

‘radiosensitive’ individuals; (2) restriction of radiation

target volumes through dose sculpting techniques; (3)

altered fractionation schedules designed to minimise normal

tissue injury; and (4) replenishment or enhancement of stem

cell numbers through growth factor administration. The

identification of additional targets for intervention is there-

fore extremely important for the many patients in whom

these strategies are of limited or no value.

As the preceding discussion indicates, several additional

processes may be amenable to modulation: (1) inflamma-

tion; (2) epithelial barrier breakdown and re-epithelialisa-

tion; (3) other early reparative processes; (4) endothelial

dysfunction; (5) fibrosis; and (6) the impact of intercurrent

pathological processes.

3.1. Experimental and clinical interventions to date

The most important lesson to learn from experiments

addressing the pharmacologic modification of radiation

injury is that various pharmacological strategies can, in

specific instances, prevent or ameliorate established early

and delayed injuries. The literature is well reviewed by

Moulder et al. [107], and Ward et al. [171]. As Ward et

al. have pointed out pharmacological agents with activity

in in vitro models do not necessarily have activity in in vivo

models and vice versa. Indeed inter-species and inter-site

differences are common. In addition, the systematic testing

of either single agents or combinations in the clinic has been

very limited. Ward et al. noted that most successful experi-

mental interventions have targeted aspects of endothelial

function. The success of steroids and non-steroidal anti-

inflammatories in several experimental injuries implicate

an inflammatory component in the immediate endothelial

response. The effectiveness of antioxidant and superoxide

dismutase preparations in some situations suggest that reac-

tive oxygen intermediates contribute to the inflammatory

reaction and, perhaps, to the development of fibrosis.

The pig fibrosis model of Martin et al., referred to earlier,

is interesting in that the experimental changes can be

partially reversed by the administration of superoxide

dismutase preparations [96] as well as by pentoxifylline

(PTX) when used in conjunction with the antioxidant vita-

min E (VitE) [23]. What is more interesting still is that these

preparations have also produced successful results in clin-

ical trials in patients with established radiation fibrosis [23].

How these substances stop the self-perpetuating fibrosis that

characterises this particular model is unclear. Delanian et al.

[24], themselves, believe that the PTX–VitE combination

may reverse the abnormal fibroblast phenotype that perpe-

tuates the fibrotic process. Clearly more work to identify the

mechanisms of these therapeutic actions are necessary.
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Pathological mechanisms of radiation injury

1 Direct cytocidal effects (‘primary’)

2 Direct dysfunctional cellular effects (‘primary’)

3 Indirect phenomena (‘secondary’)

All three are expressed after a short or long delay



The activity of the Ang II inhibitors suggest that Ang II

has a role in the development of some fibroses although

whether this is always mediated by ECs or other cellular

lineages is uncertain. As indicated earlier mast cells also

have a role in the development of fibrosis and the activity

of various anti-histamines is well summarised by Graham

and Peterson [54]. Useful lessons may come from research

from other disciplines into fibroses that are not induced by

radiation. For example the inhibition of chemokine activity

may be a promising new approach to the prevention of

fibrosis [174]. The interested reader is also directed to

Franklin [46], which is a helpful overview of pharmacolo-

gical strategies aimed at the prevention or treatment of these

fibroses.

3.2. Relevance to the modelling of injury

Although it is beyond the scope of this review it is perti-

nent to include some discussion of the relevance of the

mechanisms discussed here to the quantitative framework

of parameterisation that has been carefully documented in

academic radiotherapy circles over many years [149]. The

major relevance relates to: (1) a set of parameters that

attempt to describe the reparative tissue responses that

occur during radiotherapy, collectively known as the ‘time

factor’; (2) the description of delayed injury by the target

cell concept; (3) the concept of equal effect per fraction; and

(4) the volume effect.

In many clinical radiotherapy schedules there is a co-

dependence of fraction size and overall treatment time

(i.e. the shorter the overall time the larger the fraction

size). As a result the parameters that relate fraction size to

measured effect may also be influenced by overall treatment

time. One of the problems with the nominal standard dose

formulation (NSD) was its characterisation of the time

factor as an exponent of overall treatment time. This char-

acterisation was more ethereal than biological and, in the

absence of a better framework, the LQ model, which embo-

dies the target cell concept of tissue injury, omitted the time

factor altogether. This, too, has been a problem because it is

impossible to equate the acute effects of different fractiona-

tion schedules using the LQ model without using a time

factor [32].

Since many of the endpoints used to derive fractionation

parameters reflect manifestations of the mechanisms

described in this review as well as the lethal cellular events

as described by the LQ model, it is to be expected that

derivation of the LQ fractionation parameters will depend

on these mechanisms. Delayed mucosal injury provides an

example of where difficulties in quantifying fractionation

parameters can arise. If, for example, inflammatory

processes induced by fractionation schedules employing a

rapid RDA contribute to (i.e. increase) mucosal injury in a

proportion of patients treated, it would be expected that

mucositis would develop earlier during treatment in such

patients. Also it would be expected that mucositis and

compromise of the mucosal barrier would be prolonged

for those patients and that more severe late injury would

result. Indeed this is exactly what is observed in the clinic,

as seen in the TROG 91.01 trial referred to earlier [31].

Problems would have become apparent if an attempt had

been made to derive LQ fractionation parameters for

delayed mucosal injury from this trial, which compared

accelerated (twice daily 1.8 Gy) with conventional fractio-

nation (to total doses of 59.4 and 70 Gy, respectively). This

is because different fractionation parameter values would be

derived for different patient subgroups. Since early mucosal

reactions vary enormously in their duration, the patients in

each arm of the trial could have been divided into sub-

groups based on the duration of their early mucosal reac-

tions. For patients experiencing the shortest early mucosal

reactions the incidence of late mucosal injury was observed

to be dependent on total dose. Late effects were significantly

more frequent amongst patients treated by conventional

fractionation to 70 Gy and the incomplete repair variant of

LQ model using a low a/b ratio associated with a repair half

time in the range of 2–4 h, but without a time correction

factor, might have fitted the experience of these patients

quite satisfactorily. However, for patients with the longest

duration early mucosal reactions late mucosal injury did not

relate to total dose in the same way. In this subgroup of

patients late mucosal injuries were more frequent than

expected from predictions of the LQ model using the

same parameter values. In fact the rates of late mucosal

injury were quite similar in both treatment arms and the

LQ formula using a low a/b ratio associated with a very

long repair half time (.4 h) would have fitted the experi-

ence of this subgroup of patients. This is not the only

approach that can be adopted to fitting the scenario

described, however. It has been recognised for some time

that consequential late effects (CLE) may be fitted by the

same parameters that fit early effects, i.e. high a/b ratios and

a time correction factor [37]. In the sub-group of patients

who were treated on the accelerated fractionation trial arm,

and who experienced the longest early mucosal reactions, it

is likely that late mucosal effects occurred as a direct conse-

quence of the prolonged barrier breakdown that accompa-

nied the early reaction (i.e. these late effects could have been

called ‘consequential late effects’). Indeed it was found that

late mucosal effects in these patients could also have been

fitted with a high a/b ratio and a time correction factor.

Obviously it is unlikely that mucosal DNA repair half

time or fractionation sensitivity could vary so dramatically

within a population of head and neck cancer patients, and

better models enabling inter-patient variation in inflamma-

tory and proliferative responses to be described effectively

are needed.

It may be seen, therefore, that some of the mechanisms

referred to in this review can have a profound influence on

the endpoints used to derive LQ model parameter values and

that sometimes misleading values can result. While this

does not mean that the published parameter values should
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be doubted for tissues where these mechanisms are not

strong contributors to injury, such as the spinal cord, it

does mean that derivations for epithelial lined structures

should be viewed with caution, especially if no form of

time factor correction has been considered at all. In parti-

cular the fractionation sensitivity of these structures may be

lower than the published values, especially when dose

intense regimens are used [30].

The characterisation of an appropriate time factor is

problematic in itself. A simple exponential time function

is unlikely to reflect the complex and highly regulated

process of epithelial proliferation. The initiation of the

proliferative response is likely to be related to the accumu-

lation of epithelial injury and be linked to a specific level of

cellular depletion [152]. For the mucosal lining of the

human oropharynx this level is likely to be reached within

the first week of a conventionally fractionated course of

treatment [35]. In addition, the magnitude of the prolifera-

tive response is limited by the proportion of cells remaining

that can undergo division and by cell cycle length

constraints [32,34]. Two recent studies have investigated

how the time correction factor should be structured when

used in conjunction with the LQ model. One study

addressed epithelial proliferation in the rat small gut

model of Hauer-Jensen and coworkers [27]. The other

looked at radiation-induced tumour cell repopulation for

human squamous cancers of the head and neck [29]. In

both scenarios fitting of the data was unsuccessful unless

the initiation of the proliferative response was linked to

accumulated damage and a ceiling to the magnitude of the

response was applied. It was acknowledged, however, that

even this apparently simple approach to the development of

a time correction factor involves the use of enough addi-

tional parameters to challenge the validity of the successful

models due to ‘over-parameterisation’.

As has been pointed out earlier in this review, epithelial

cellular depletion and compensatory proliferation are not

only processes that occur in a normal tissue during radio-

therapy, and the time courses of these processes may differ

markedly. However, it may be seen that the initiation of the

reparative response and the rate at which injury accumulates

after the reparative response has commenced, are directly

dependent on the RDA. This, in turn, explains why RDA is a

more important and direct determinant of tissue injury than

overall treatment time. It is also apparent that efforts to

model the time factor will meet with limited success until

the underlying processes can be parameterised successfully.

The importance of this issue is demonstrated when RDA is

escalated during treatment (e.g. when applying a ‘concomi-

tant boost’). Although overall treatment time is identical if a

concomitant boost is delivered at the beginning or at the end

of the treatment course, the normal tissue consequences can

differ dramatically. In Hauer-Jensen’s rat small gut model

delayed injury was significantly greater in rats who received

the concomitant boost at the beginning of therapy [3]. This

finding was thought to be due to impairment of the epithelial

proliferative response before it had become established and

provides strong support for the thesis that normal tissue

response to radiotherapy is not the same at the beginning

and at the end of the treatment course. Clearly equal effects

are not produced by each fraction in a normal tissue that

mounts a reparative response during the treatment course.

Mention has been made already of the difficulty of deter-

mining what LQ model parameters are for delayed injuries.

However, this review makes it clear that killing of target

cells is not the only process that contributes to the manifes-

tations of delayed injury. Processes like fibrosis, which in

some instances may be reversed by medication, are a case in

point. The target cell concept represents the cornerstone of

the prevailing modelling conceptualisation of ‘the volume

effect’. Withers et al. [180] proposed the concept that

normal tissues are composed of functional sub-units which

are the largest unit of cells capable of being regenerated

from a single surviving clonogen. Using an electrical circuit

analogy, Withers pointed out that tissues are organised in

one of two ways from a functional perspective: (1) ‘in paral-

lel’ (e.g. organs such as kidney, lung, liver, etc) or ‘in series‘

(e.g.organs such as spinal cord, gut, etc). This organisation

determines the functional outcome of irradiating a portion

of that organ and has implications for the way in which

irradiated organ volume data, such as now widely available

from the dose–volume histograms produced by modern

treatment planning computers, can be modelled to produce

normal tissue complication probability (NTCP) estimates.

Although in many instances the models derived on this

basis, such as the critical volume model of Niermerko and

Goitein [111], produce realistic estimates of NTCP, there

are specific situations in which the models do not provide

accurate predictions. For tissues organised ‘in series’ such

as gut and spinal cord, careful experimental work in the last

15 years indicates that the tolerance of short lengths of these

organs is considerably higher than predicted by the critical

element model presumably due to the reparative prolifera-

tion and migration of ‘tissue rescuing’ stem cells outside of

the irradiation portals. In reviewing the data Travis [151]

noted that a refinement of the model, the threshold prob-

ability model, would provide a satisfactory fit. In the same

review Travis concurred with Hopewell and Trott [70] and

Hill et al. [67] that the satisfactory modelling of injury to

tissues organised ‘in parallel’ such as lung were challenged

by out-of-field injurious effects that might be mediated by

cytokines, and by regional variations in sensitivity within

the irradiated volume.

3.3. Future prospects

It is reasonable to expect that in the next 10 years many of

the mechanisms of injury that have been described imper-

fectly in this review will be thoroughly understood. With

this understanding will come the evolution of effective clin-

ical strategies. No doubt many will build upon the concepts

alluded to in the last few paragraphs, but further gains may
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be achievable by addressing the interaction between pre-

existing pathological processes and the mechanisms that

contribute to injury that are induced by radiation.

At present it is difficult to predict how much the success-

ful interruption of the processes that contribute to injury

(besides cell killing) will impact on the overall burden of

delayed injury to the therapeutically irradiated community.

Prediction will be especially difficult if successful interven-

tion leads to an expansion in the indications for radiother-

apy.
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