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Michelson interferometers

(the main reference for these slides is the paper by Black and Gutenkunst, An introduction to signal extraction in
interferometric gravitational wave detectors, Am. J. Phys. 71 (2003) 365)
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Fig. 2. A basic Michelson interferometer is sensitive to the kinds of strain a
gravitational wave will produce. Incident laser light is split by a beam split-
ter, sent down orthogonal paths along the x and y axis, reflected from mir-
rors at the ends of these paths, and recombined back at the beam splitter. The

interference between these two return beams produces a net intensity that is
sensitive to differential changes in the lengths of the arms.
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(note that the amplitude reflection coefficients are equal to -1
for a perfect mirror; moreover in this formula we consider the
substrate of the beamsplitter where the reflection picks up an
additional minus sign only in one direction of propagation)
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Transfer function

The ratio of the electric field amplitudes

H(w) = — —ie* ) gin [k(0, — £,)]

where k = w/c

\ is the transfer function of the interferometer.
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Effect of a GW with + polarization (w.r.t. the interferometer arms)
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Fig. 2. A basic Michelson interferometer is sensitive to the kinds of strain a H (w) — GQZk ¢ COS [ k (6 E _|_ € h)]

gravitational wave will produce. Incident laser light is split by a beam split-
ter, sent down orthogonal paths along the x and y axis, reflected from mir-
rors at the ends of these paths, and recombined back at the beam splitter. The
interference between these two return beams produces a net intensity that is
sensitive to differential changes in the lengths of the arms.
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and the transfer function becomes



Effect of a GW with + polarization (w.r.t. the interferometer arms)
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Fig. 3. The intensity of the light at the observation port versus the difference

in arm .lengths (units of \, the Wavelength of the hgl.lt). Operating at point 1 A e . .

maximizes the change in power for a given change in arm lengths, but also 2 IS th en UI/ pO[nt Of th e |nte rfe rometer
makes the instrument sensitive to intensity noise in the light source. Oper-

ating at point 2 eliminates this problem, but, in a simple Michelson inter-

ferometer, it reduces the signal to a second-order effect.



Phase modulation

We use phase modulation to linearize the interferometer
response at the null point
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Fig. 6. We can use lock-in detection to recover a linear signal from a dark
port.



Mathematical aside:
Bessel’s functions of the first kind and integer order

Consider Laplace’s equation in cylindrical coordinates
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we try a factored solution

CI)(r,O,z) = R(r)@(H)Z(z)
then, we obtain
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The last sum depends on three separate pieces that depend on different, independent
variables, and the only way for it to hold for all values of the variables is that each piece is
a constant.
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The first two equations are easy to solve
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The third equation
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Now let J (x) be the solution of the n-th order equation, then

282Jn+xajn
ox’ dx

X

n

+(x2—n2)J =0

and when we introduce the generating function
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The following function satisfies the p.d.e.

F(x,t)= expB(t—%ﬂ

which we can confirm by direct substitution into the equation.

Finally, if we let

we find the Jacobi-Anger identity

F(x,0)= exp[%(eie —~ e“’)} = exp(ixsinf) 2] e
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Since the generating function
F(x,t)= exp[ (t——ﬂ ZJ
is invariant with respect with the exchange ¢ < —1/t we also find
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Phase modulation
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Fig. 6. We can use lock-in detection to recover a linear signal from a dark
port.

1 modulation index
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Response of the interferometer
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We can make the arms unequal in length so that cos k¢ = 1 and therefore sin kd¢ = 0
(the difference is the Schnupp asymmetry)

With the Schnupp asymmetry, the transfer function evaluated at the carrier frequency is
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Total electric field at the output port

Eout = Eo (HoJo(ﬁ)eM + H J (B!t _ g Jl(ﬁ)ei(w—ﬁ)t)

— 3 Evin€2zk€67,wt JO(B)%Eh + Jq (5) sin <65€> (eth—}—ZzQE/c 4+ ethQzQE/c)]

N 0
= —i By e?tktetwt JO(B)%gh + 2J1(B) sin <05€> cos (2t + 2Q€/c)]




Total power at the output port
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DC Fourier components
A2 02
A2
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A
component at twice the modulation frequency, sideband power, linear in the

which does not carry useful information on wave wave amplitude
amplitude
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Photodiode response is proportional to power
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Virgo’s 35-cm diameter mirrors have an almost perfect surface

The large mirrors of Advanced Virgo are a crucial part of the detector. Indeed, achieving the best sensitivity to
gravitational waves requires the loss of as little laser light as possible in the detector. For that purpose, all the three
ingredients of a mirror, the substrate, the polishing and the coating, are at the frontier of current technology:

1. The substrate is made with the purest glass in the world (it is a synthetic quartz called “fused silica”). This glass has
extremely low absorption and is homogeneous and uniform in all the directions. Despite its outstanding properties,
it can come in relatively large size. For example, the mirror forming the 3-km arm cavities have a 350 mm diameter,
are 200 mm thick, and have a mass of 40 kg.

2. The polishing, to shape the mirror profile, is done at the atomic level: on the central part of the mirror, the largest
defects on the surface have a height of just 5 atoms.

3. The last step, the coating, is made to have reflective mirrors. The coating is precisely tuned so that the mirror has the
desired reflectivity at the operational wavelength and so that less than 0.0001% of the laser light is lost when it is
reflected by the mirror (due to the absorption, residual transmission, or scattering). This precise coating is done with
a unique machine located in a laboratory of the Virgo Collaboration in the Lyon metropolitan area (LMA, Laboratoire
des Matériaux Avancés). The mirrors for the LIGO interferometers are also coated in this laboratory.
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Picture of the Advanced Virgo
beam-splitter mirror
(diameter 550 millimeters)
being prepared in the LMA
clean room.

Credit: Virgo
Collaboration/LMA/L. Pinard




The two Advanced
Virgo end mirrors after
they have been coated
at LMA.

Credits: Virgo
collaboration/LMA/L.
Pinard




Virgo’s 40 kg mirrors are suspended by thin glass wires

Because of their non-zero temperature, atoms and molecules of mirrors and suspension wires are vibrating: these induce
vibrations of the mirror surface that may mimic a gravitational wave passing the interferometer. The way the large mirrors
of Advanced Virgo are suspended is thus crucial to reduce this thermal noise.

For that purpose, suspensions wires made of the same glass (fused silica) as the mirrors have been developed to
minimize the pendulum thermal noise of suspended mirrors.

These suspensions are called monolithic since the wires are welded to the mirrors and are both composed of the same
fused silica. This design allows to reduce the friction at the mirror-wire contact point, which is a source of the thermal
noise. With the monolithic choice, the dissipations are so low that pendulum oscillations in vacuum can last for months
before stopping. Moreover, fused silica wires have a high breaking strength, about twice that of steel wires. Such strength
is very important, since the suspension must be highly resistant to the mechanical stress caused by oscillations of the
mirror itself and to possible mechanical shocks of the mirror onto the surrounding materials.

The material of the suspension must be precisely controlled and produced, and carefully manipulated. For this reason,
the glass fibers (diameter of 0.4 mm and length of 0.7 m) are directly produced in the laboratories in Cascina using a laser
machine and tested with very high accuracy and reproducibility.

A particular chemical bonding technique (silicate bonding) has also been developed to join all the glass components in a
unique element. This kind of suspension is apparently very fragile, but instead it is highly resistant along the fiber
direction. However, special care must be taken to prevent any possible lateral damage to the fibers themselves.
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42 kg mirror (with a thin pink protecting film) suspended inside the
payload by two thin wires of fused silica (glass).

Credits: Virgo collaboration
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Zoom on an anchor bonded
to one side of a mirror and
attached monolithically to
two thin fused silica wires
used to suspend the 42 kg
mirrotr.

Credits: Virgo collaboration




Virgo is a kilometer-wide optical table suspended and
placed in ultra-high vacuum

The Virgo interferometer is a huge optical table placed under ultra-high
vacuum. Each optical element is suspended with a seismic isolation system
that is housed in a vacuum tank.

Two types of suspensions have been developed. The interferometer
mirrors and the main optical benches are suspended with the so-called
“super-attenuators”, housed in vacuum “towers” about 10-m high. For
Advanced Virgo, five more optical benches sensing the interferometer
beams have been suspended with the so-called “multi-stage seismic
attenuation system” and housed in vacuum “mini-towers” more than

3 meters high.

The vacuum towers are linked together by vacuum tubes for the passage of
the laser beams. The largest tubes of Virgo, that link the two towers of the
Fabry-Perot cavities are 3 km long and 1.2 m diameter. This makes Virgo a
huge ultra-high vacuum chamber of 6800 m3.

Filter O

LS

Inverted
pendulum

Filter 7



Ultra-high vacuum in the large tubes and around the mirrors is crucial for two reasons. Moving residual air molecules
would hit the mirrors, inducing tiny displacements of the mirrors; moreover, the laser beam would interact with the
air molecules, modifying its path and loosing power. That would perturb the measurement of gravitational waves.
Therefore, the path of the light beam that travels in each Fabry-Perot cavity has to be evacuated down to the
extremely low pressure of 1012 atmospheres (100 times lower than for initial Virgo).

To attain this very low value, special metallurgical processes such as hydrogen desorption at 400°C have been
developed for the fabrication of the vacuum parts. In addition, to eliminate the water vapor in the large 3-km long

tubes, they will be heated at 150°C for one month each and cryogenic traps have been installed for Advanced Virgo at
each end of the tubes to stop the migration of water molecules from the unbaked towers to the tubes. Despite their

thermal isolation, each 3-km vacuum tube requires a power close to 1 MW to perform the heating operation.
The optical benches host a lot of mirrors, lenses and sensors (photodiodes and cameras). In Virgo, these optical
elements were slightly vibrating because of ground vibrations and environmental sounds. This was limiting the Virgo

sensitivity to gravitational waves.

In order to attenuate these vibrations, the new Advanced Virgo benches, weighting about 320 kg, have been
suspended and placed into vacuum like the large mirrors.
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Figure 29. rendering of the vacuum chambers in the ’central area’
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The Advanced Virgo benches are suspended to an attenuator and
placed in vacuum to isolate them from vibrations from the ground and
from environmental sounds.

Credits: Cyril Frésillon/Virgo/Phototheque CNRS
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The Virgo 3 km long north tunnel.
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The arms of a gravitational
interferometer like Virgo are
more complex than a pair of
end mirrors, they include
Fabry-Perot resonant cavities.

This clearly defines the test

masses and leads to a large
amplitude gain.
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Detection
photodiode

Scheme of a Michelson
interferometer with Fabry-
Perot cavities on its arms

substrate
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Basic scheme of a Fabry-Perot
resonant cavity
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Standard theory of Fabry-Perot resonant cavities: mirrors with equal (and real) reflectivity and
transmission coefficients, no absorption

Energy conservation means ‘R|2 —+ ‘T‘z =1

Einside — TEin -+ TRinneiQkL -+ TR4Ein€i4kL —+ ...

oo

o 2inkl Here we drop the time
= TE;, E R et < dependence (assuming
n—0 perfect coherence of light)
T
T 1 _ R2p2ikL Ein
T2 Eout T2

Eout — p— -
Em 1 — R2e%kL
This is the transfer
function of the F-P cavity

43



Eout

Pout
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— - Ein — . . Ein ’
1 — R2eZkL (1 — R?cos2kL) —iR?sin2kL ‘

— i E. eikL Again, remember that transmittivity
(1 _ R CcOS Qk.L) _ ’LR sin QkL 1n and reflectivity are both real here
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1-R?
 (1-R)2+4Rsin’kL "
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Transmitted power [W]

Phase shift [rad]

first peak at nonzero frequency (FSR)

Analogy with the harmonic oscillator

o Wy o FSR
Q_I’_% f_5u

"photon lifetime" inside the resonant cavity (on
resonance)

1 IR 1
T = — T = 5
r 2TOV
or also
F CT F
! szSR’;’ op ~ IORT= o0

average number of
back-and-forth passes

inside cavity
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A',,..o Lorentzian intensity (normalized)

-
N

=
o)

Q
n

&
N

&
w

o
[N

=
=

- Airy, R1=R2=0.172 - = = |orentzian, R1=R2=0.172
~ Airy, R1=R2=0.320 ~ — — Lorentzian, R1 =R2 =0.320
—— Airy, R1 = R2 =0.600 - = = Lorentzian, R1 =R2 =0.600

— Airy, R1 =R2 =0.900 - = = Lorentzian, R1=R2 =0.900

AVairy
RANAR

0.0

(V-vo)/ Avige

48



Ray confinement in a Fabry-Perot resonant cavity
(simple geometrical optics approach)

Ny

A

d =I

Geometry of a spherical-mirror resonator. In
this illustration both mirrors are concave (their
radii of curvature are negative).



Methodological aside: matrix optics
(from Saleh&Teich, Fundamentals of Photonics, 2nd ed. Wiley 2007; for a concise explanation, see also

https://www.rp-photonics.com/abcd matrix.html)

Ray

Optical =
axis 'z
Input Output
01,61 Optical system )
A
y
Input Output
plane 0, plane
.4{{2
N Y2
_ Optical
L Z  axis

In the paraxial approximation (small angles,
so that sin x = x)

y2 = Ay + Bb,
(92 = C’y1 -+ D@l

Figure 1.4-1 A ray is charac-
terized by its coordinate y and its
angle 4.

A B
C D

!

Effect of optical element
encoded in this matrix

(ray transfer matrix)

Y1
01

Y2
02

=)

Figure 1.4-2 A ray enters an
optical system at location z; with
position y; and angle 6, and leaves
at position y, and angle 6,.
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https://www.rp-photonics.com/abcd_matrix.html

Free-Space Propagation

Since rays travel along straight lines in a medium of uniform refractive index such as
free space, a ray traversing a distance d is altered in accordance with yo = y; + 6:d
and 6y = 0,. The ray-transfer matrix is therefore

l«—  —>

(1.4-4)

o 1]

Refraction at a Planar Boundary

At a planar boundary between two media of refractive indexes n, and ny, the ray
angle changes in accordance with Snell’s law n; sinfl; = ngsin . In the paraxial
approximation, 1167 = n.6s. The position of the ray is not altered, yo = w:. The
ray-transfer matrix is

n

7

n



Refraction at a spherical boundary




Refraction at a Spherical Boundary

The relation between #; and 6, for paraxial rays refracted at a spherical boundary
between two media is provided in (1.2-8). The ray height is not altered, y2 ~ y;. The
ray-transfer matrix is

1 0
M=| @ne—m) nl- (1.4-6)

no R N9

Convex: R > 0; concave: R< (0

Transmission Through a Thin Lens

The relation between 6, and 65 for paraxial rays transmitted through a thin lens of focal
length f is given in (1.2-11). Since the height remains unchanged (y2 = 1), we have

= Ny
vf [ 4 oen

Convex: f>0; concave: f<0

prove this
result!



Reflection from a Planar Mirror

Upon reflection from a planar mirror, the ray position is not altered, y2 = y;. Adopting
the convention that the z axis points in the general direction of travel of the rays, i.e.,
toward the mirror for the incident rays and away from it for the reflected rays, we
conclude that 6, = 6,. The ray-transfer matrix is therefore the identity matrix

M= [1 0] . (1.4-8)

Reflection from a Spherical Mirror

Using (1.2-1), and the convention that the z axis follows the general direction of the
rays as they reflect from mirrors, we similarly obtain

e
—]

—

(—=R)

O] . (1.4-9)

o =

Concave: R < 0; convex: R>0
Note the similarity between the ray-transfer matrices of a spherical mirror (1.4-9) and

a thin lens (1.4-7). A mirror with radius of curvature R bends rays in a manner that is
identical to that of a thin lens with focal length f = —R/2.

prove this
result!



Important remark:

in all cases considered here, the determinant of the ray transfer matrix is

detl\/I:E — 1
%)

!

homogenous environment (same
refractive index) or vacuum



C. Matrices of Cascaded Optical Components

A cascade of N optical components or systems whose ray-transfer matrices are
M;,M,,..., My is equivalent to a single optical system of ray-transfer matrix

N

M, —---— My |— M=Mpy---M:M,.

— M

(1.4-10)
Note the order of matrix multiplication: The matrix of the system that is crossed by the
rays is first placed to the right, so that it operates on the column matrix of the incident
ray first. A sequence of matrix multiplications is not, in general, commutative, although
it is associative.



EXERCISE 1.4-3

A Gap Followed by a Thin Lens. Show that the ray-transfer matrix of a distance d of free
space followed by a lens of focal length f is

l f
1 d
l M= !_1 - g} . (14-12)
I i
— d —
EXERCISE 1.4-4

Imaging with a Thin Lens. Derive an expression for the ray-transfer matrix of a system com-
prised of free space/thin lens/free space, as shown in Fig. 1.4-3. Show that if the imaging condition
(1/d1+1/dy = 1/ f) is satisfied, all rays originating from a single point in the input plane reach the
output plane at the single point y,, regardless of their angles. Also show that if dy = f, all parallel
incident rays are focused by the lens onto a single point in the output plane.

N
Voo

f— d — | d; —> Figure 1.4-3 Single-lens imaging system.




Propagation in periodic systems

Example of periodic optical system

gl aspalas | fasl 46 blas e
6| C Dlo| CD C D CDlg|CDJg,,
1 2 m-1 m m+ 1

A periodic optical system can be studied by repeatedly applying the same ray transfer matrix



To determine the position and slope (y.., 0, ) of the ray at the exit of the mth stage,
we apply the ABCD matrix m times,

[gz] — [é g] lgﬂ (1.4-18)

We can also iteratively apply the relations

Ym+1 = AYym + BO,, (1.4-19)

It is of interest to derive equations that govern the dynamics of the position ¥,
m = 0,1,..., irrespective of the angle 6,,. This is achieved by eliminating 6,,, from
(1.4-19) and (1.4-20).



Ym+1 — Aym + By,
Om+1 = Cym + DO,,

)

0. — Ym+1 — Aym
m B .
Replacing m with m + 1 in (1.4-21) yields
0 _ Ym+2 — Aym+1
m+1 B

Substituting (1.4-21) and (1.4-22) into (1.4-20) gives

Ym+2 = 20Ym41 — Fzyma

(1.4-19)
(1.4-20)

(1.4-21)

(1.4-22)

(1.4-23)
Recurrence Relation
for Ray Position
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_ Ym+1 — Aym

O 1.4-21
5 ( )
Replacing m with m 4 1 in (1.4-21) yields
— A
Oy = Jmt2 — HYmil (1.4-22)
B
Substituting (1.4-21) and (1.4-22) into (1.4-20) gives
Ym+2 = 2bYmi1 — F2ym, (1.4-23)
Recurrence Relation

for Ray Position

where

b= A—;’Q (1.4-24)

F? = AD — BC = det[M], (1.4-25)



An approach based on the formalism of generating functions, suggests a solution of
the following form (prove it if you know this formalism)

Ym = Yoh™ (1.4-26)

where h is a constant. Substituting (1.4-26) into (1.4-23) immediately shows that the
trial solution is suitable provided that A satisfies the quadratic algebraic equation

h? — 2bh + F? = 0, (1.4-27)

from which

h=b+j\VF2— b2 (1.4-28)
The results can be presented in a more compact form by defining the variable

@ = cos™(b/F), (1.4-29)



@ = arccos(b/F) = b= Fcosy; \/FQ—b2:F51n¢

= h = F(cosp+isiny) = Fe'¥
= Y = yoF e
A general solution may be constructed from the two solutions with positive and

negative signs by forming their linear combination. The sum of the two exponential
functions can always be written as a harmonic (circular) function, so that

Ym = YmaxE " sin(mep + @), (1.4-30)

where ymax and g are constants to be determined from the initial conditions gy and
y1. In particular, setting m = 0 we obtain ynax = Yo/ Sin o.



In the case of mirrors, the determinant

therefore

and the solution 1s

det M =1

F =+vVdetM =1

Ym = Ymax sin(mgp + o).

(1.4-31)
Ray Position
Periodic System



Ray confinement in a Fabry-Perot resonant cavity

(simple geometrical optics approach)

Figure 10.2-2 The position and inclina-
tion of a ray after m round trips are rep-
resented by y,,, and 8,,, respectively, where
m =0,1,2,....Inthis diagram, #; < 0since
the ray is directed downward. Angles are
exaggerated for the purposes of illustration;
all rays are paraxial so that sinf =~ tanf =
6 and the propagation distance of all rays
between the mirrors is = d .

In this discussion, we limit ourselves to

e paraxial rays
* meridional rays (rays that lie in a plane through the optical
axis)

The system is periodic, with round-trip transfer matrix
A Bl |1 0Off1 dj|1 Off1 d
(R 1 A I

s Propagation a distance d through free space
m Reflection from a mirror of radius Ry
m Propagation a distance d through free space
m Reflection from a mirror of radius R;



For the case at hand F' = 1, so that

Ym = Ymax SID(Mp + ¢g), (10.2-3)
d d
—cos b bh=2 — {14+ =) 1. 2-
(0 = COS : (1+R1)( +R2) (10.2-4)

The solution (10.2-3) is harmonic, and therefore bounded, provided ¢ = cos™'b is
real. This is ensured if [b] < 1,1.e.,if —1 < b < 1, so that

d d
< il —~ <. 2-
0_(1+R1)(1+R2)_1 (10.2-5)

It is convenient to write this condition in terms of the quantities g = 1 + d/R; and
g2 = 1+ d/ Ry, which are known as the g parameters:

0<g192<1 (10.2-6)
Confinement Condition




0<g192< 1L

(10.2-6)
Confinement Condition

The resonator is said to be stable when this condition is satisfied.

When the confinement condition (10.2-6) is not satisfied, ¢ is imaginary so that y,,
in (10.2-3) becomes a hyperbolic sine function of m that increases without bound. The
resonator is then said to be unstable. At the boundary of the confinement condition
(when the 1nequalities are equalities), the resonator is said to be conditionally stable.



a. Planar
(Rl =R2 = co)

N
\\iﬁ:\“

S

R

b. Symmetrical confocal
(R1=Rp=-d)

c. Symmetrical
concentric
(Ry=Rp=-d2) M

d. Confocal/planar
(Ry1=-d, Rp=)

e. Concave/convex
(R1<0, R2>0)

Figure 9.2-3 Resonator stability diagram. A spherical-mirror resonator is stable if the parame-
ters g, =1+d/R, and g, =1+ d/R, lie in the unshaded regions bounded by the lines
g1 =0and g, = 0, and the hyperbola g, = 1/g,. R is negative for a concave mirror and positive
for a convex mirror. Various special configurations are indicated by letters. All symmetrical
resonators lie along the line g, = g;.

68



Fabry-Perot resonant cavity with unequal mirrors

It is easy to see that for an FP cavity with unequal mirrors:

ti
1 —r;r.etk2L

Ein

* intracavity field Einside

. —71; + re(r? + 12)et*2L
* reflected field Ereﬂected = 2L [
1 —rireet

titGGZkL
* transmitted field Etransmitted — 1 oL Ei,
— I;Te€’

S _ T

e finesse:
1 —r;re

In Advanced Virgo

r; = 0.993;  re = 0.999998

= F =~ 450

(i = input mirror; e = end mirror)



vy —

Intensity transmittance and reflectance of a Fabry-Perot resonant cavity.



Now, consider the complex (amplitude) reflection coefficient of the FP cavity

—1i + 1e(r? + 12)etF2L

F = :
1 —r;r.etk2L

By decomposing F in real and imaginary parts, we see that this equation represents the coordinates of a plane curve,
expressed here in parametric form.

Letting F' = o + z’y we rewrite the same equation in the form
F+r;=[Frire + re(r] +7)] 2"
= |F+r|?=|Frire + fre(’r-Q + tz)‘Q
= 271 —r?rd) +y*(1 — rir?) — 2r (1 —r2(r? + t2)) T =ri(r: +t3)° —r?

274 (1 — r2(r. + t?)) (7“ —I—t2) 2
2 2 1 (& 1 1 _ 7/
= Tty + 22 T = =22
2 2
ri (1 —r2(r? + t2 r? (1 —r2(r? +t2 2(r2 4 ¢2)% — 2
— T+ ( e( 1 z)) _|_y2_ 1 ( e( 1 7,)) Te(TZ + z) r;

— 2.9 — ~ 2.9\2 ~ 2.9
1 —rir2 (1 —rir?) 1 —rir2



The r.h.s. can be simplified further, and we obtain (prove it!):

s (L —r2(r? + 7))

1 — 72

2
ire

which is the equation of a circle with center

i [L =202 + )

2,2
| R o

, 0

and radius

r?tf
(1= r#r2)?

1

+y? =

Critically Coupled [
(=15) Overcoupled
(r,>r;)
Undercoupled |
( T,<I)

Fig. 11. The amplitude reflection coefficients for Fabry—Perot cavities are
circles in the complex plane; r; and r, are the amplitude reflection coeffi-
cients of the input and output mirrors, respectively.
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e r;=r, critical coupling
At resonance the reflected beam vanishes, all the
incident power is transmitted through the cavity.

e r;<r, overcoupling
The leakage beam that bounces back from the cavity has
larger amplitude than the promptly reflected beam, and

there is reflection even at resonance, with positive

amplitude reflection coefficient. Critically Coupled

(L,=T1;) Overcoupled

* r;>r, undercoupling / (1r,>1)
The leakage beam has a smaller amplitude than the
promptly reflected beam and there is reflection even at

resonance, with negative amplitude reflection |

coefficient.
Normally, GW interferometers are operated with Undercoupled [
overcoupled FP cavities. (Te<T;)

Fig. 11. The amplitude reflection coefficients for Fabry—Perot cavities are
circles in the complex plane; r; and r, are the amplitude reflection coeffi-
cients of the input and output mirrors, respectively.
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Amplitude ratio in the case of the Advanced Virgo mirrors.

Ereﬂected

—1; +1ro(r? + t2)et*2L

Ein

1 — ryreetk2l

0.5

. / resonance condition

PN

-0.5

0.5

1.0

Re
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Following a length change in one arm

—7; + 1o (r? + t2)eth2L —1r; + 1o (12 + t2)eth2LAIL)

F =

v

Ao L
A

Then, expanding about resonance, so that 2L — 1 and eth2(L+0L) _ ik20L 4 + 20k6L =1 +

—r; + 7“6(7“2-2 + tzz)(l + 4mid L/ \)

F =~
1 —rire(1+4midL/N)
=14 re(rf + ) (1 + AmidL /)
(1 —ryre) — Amiryre O L)\
=1t re(rf + ) (1 + AmidL /) m Amir;red L/ A
B 1 —7ire 1 —7ire
—r; +re(r? + 12 0L oL
it (rs +t3) N 8midL /A ~ 1480l

1 —r;re 1 —r;re A



When we include losses (e.g., due to mirror imperfections), we find the arm reflectances

0L,
Ty = (1 — % (1 + 8iF A’y)

/

average number of
single passes inside average loss
cavity per single pass

This is the reflectance for the carrier.

For the sidebands we can assume that they are completely reflected by the input mirror with -1 amplitude reflectance.

The FP cavities act as individual mirrors, and their length is the same. The equivalent
Michelson interferometer has arms that have only few meters, and the Schnupp
asymmetry is applied to these short arms.
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Close to resonance we find that the full transfer function of the Michelson inteferometer with FP arms is

* Carrier
H(w) = ¢ (et — p,ehCh)
L (12 Tae ) (gree) ke | giE Ly | gim Lykee) « e ety
2 T h\ \
1 ac ) i - L
=—5|1- F—E eF(et8y) [ 9 5in k6l 4 8iFae—h cos kil
’ " A « the Sch
use the Schnupp
~ _4,L-6ik:(€m—|—£y) (1 . ]:ac 6) facéh asymmetry here
U A
* Sidebands
H(wy) = —ie™E=Th) gipn (w )0l
& use the Schnupp
asymmetry here
— Fieth+ batly) gip (_QM)
C

: )
= iFieZki(emMy) sin (27r ¢ )
)\mod
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Total electric field at the output port (Michelson interferometer with FP arms)

Eouy = £ (HoJo(B)eM + HJ (B)ef @t Dt g, (5)ei<w—ﬂ>t)

20| L L 0 | | . _
= —iEme®™*" | Jo(B)4Fac (1 _ L e) h+ J1(5) sin (;55) (eZQHng/C + e_mt_zzm/c)]

A T
L
A

= —iBine®™ | Jo(8)4F ac (1 _ L e) h 4 2J1(B) sin (EM) cos (1t + 2Q£/c)]

s



Total power at the output port

v

4

) L acC . Q
B = —iE, 2 [JO(ﬁ)ZlfaCX (1 _ e) h + 2J1(6) sin (Z(%) cos (2t + 204/ c)

Pout (Q)
Py

— 16J5(8)J,(8) sin (%5@) ]-"a6§ (1 _ ]; e) hcos (Qt + 200/¢)

Vep(Q2) = 16(RPin)Jo(B)J1(6) sin (%56) .7:a0§ <1 — };:’C e) h cos (2t + 2Q4/c)

Viignal = 8(RPin)Jo(B)J1(5) sin (%56) ]—"acé (1 _ Fac e) h
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Power recycling

Detection
photodiode

Scheme of a Michelson interferometer with
Fabry Perot cavities in its arms and a power
recycling mirror

Part of the power in the Michelson interferometer would head back
towards the laser, and be lost.

The purpose of the power recycling cavity is that of making the
power flow unidirectional, as in a standard FP cavity.

The recycling cavity acts as an additional FP cavity, where one of the
mirrors is the power recycling mirror, and the other one is the whole

interferometer with its FP arms.

In this case we wish to trasmit forward as much radiation as possible,
while the backwards reflection should be as little as possible.

Clearly, the (amplitude) transmission coefficient of the cavity is

kL klem —bs
FEtransmitted o titee' E P trmtifo€” b
— . ln — .
Eln ]. - Tzreezk2L re 1 - Trmrlfoezk2£rm_bs
where

rc = recycling cavity
ifo = interferometer
bs = beam splitter
rm = recycling mirror
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Recycled power

Sidebands are off-resonance with respect to the F-P arm cavities, therefore 7, = 7, = —1 , sothat the
reflectivity is given by the light going back to the symmetric port

r( ) _ pik+ (Latly) (,r,xezkic% +rye zkic%) — ik (latty) (ezkiéﬁ +e zkziéé)

ifo
. . Q
= —eFEleTh) cog (kb)) = ettt gog (kc% + —5€>
c

— etk (latly) [COS kol cos (Q(%) F sin ko4 sin (Q(W
c

¢ ) :| use the Schnupp
asymmetry here

while the interferometer transmission coefficient represents light
moving towards the antisymmetric port, and corresponds to the
transfer function that we have just found

— _ethx(latly) g (Q(%)
c

symmetric port

1

Laser | |

$(E) = ?ieiki(&”My) sin (27‘(’ of ) :

ifo )\mod \v/

antisymmetric port
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Using these values

p(E) = ikt (latly) cog (27‘(’ of )

ifo
mod

: Y4
ti(fi) — Fiethxlatly) gip (27r )
>\mod

we find the reflection coefficient of the power recycling cavity

2 2 k20— bs
Ereﬂected . —Trm + rifo(rrm + trm)ez b

Ein 1 — Trmrifoeikzgrm_bs

from which — after substitution of the ifo values — we see that the resonance condition is

okt (CatLly+26m—bs) _ 1

2 oL r
cos | 27 = 'rm
)\mod

which requires an adjustment of the Schnupp asymmetry to satisfy this constraint as well.

and that the reflected field vanishes for




On the whole, on resonance there is no reflection and the transmission coefficient for sidebands is

t tf eik:lzerm—bs .
tI‘C o rm 1o sy +qe thtlim—ps

1 — T'rmTifo e+ 2rm —ps

Similar calculations can be carried out for the carrier beam and one finally finds the transfer function of the complete
interferometer

. 4 L
H(a}) = ie_Zkerm_bs ﬁfac FrCXh

So that the voltage signal at the end of the detection chain is

VvSignal — %(RPIH)JO(ﬁ)Jl (B)Fac V -Frcéh



Power recycling

The complete setup of the power recycling system must take into account that:

* The carrier field must be on resonance in the arm Fabry-Perot cavities
* The carrier field must be on resonance in the power recycling cavity to enhance the effective input power as much as possible

* The arm FP stabilization feedback uses the sidebands as phase reference; for this reason, the sidebands must be off-resonance in
the arm cavities and reflect off the input mirrors of the arm FPs

* The sidebands must be on resonance in the power recycling cavity, otherwise, they would not reach the input mirrors of the arm
FPs

* A phase reference is also needed to build up an error signal for power recycling cavity; for this reason, it is necessary to use a
modulation frequency that is not resonant in the power recycling cavity

* the power recycling cavity of Virgo needs a special consideration due to its optical configuration which is very close to the limit
of stability since 1 — g,2, = 0.19 x 107>,



The consequence of being so close to the instability region is that the frequencies of the HOMs (Higher order modes) are
very close to the fundamental mode. In this case, HOMs — due, for example to misalignment or mismatch — will couple
very strongly to the optical cavity, diminishing power in the fundamental mode.

The frequency separation between HOMs in the power recycling cavity of Virgo is 11.3 kHz. When compared to the
linewidth which is 210 kHz it is obvious that HOMs are very relevant.

The spatial intensity profiles of
Laguerre-Gaussian modes.




The complete scheme includes a signal recycling cavity as well

My, 1y

My, 1y

BS My, ry M, 1y

Detection
photodiode

Scheme of a Michelson
interferometer with
Fabry-Perot cavities on
its arms

—— =

My, r;
Lep
My, 1y
Ly
My, 1y M,, ry
tPR pr '
Detection
photodiode

Scheme of a Michelson
interferometer with
Fabry Perot cavities on
its arms and a power
recycling mirror

M,, r,

M, rp

BS M, r M,, ry

PR
——1 &= — {1

I
ters PR

E SR! rSR
]

U Detection
photodiode

Scheme of a Michelson
interferometer with Fabry
Perot cavities on its arms, a
power recycling mirror and

a signal recycling mirror

86



Advanced Virgo

YP

Fay
YP I

o
2009 2011 -
Ay ~
SP s [:Z/ N\
- . o BS mx \ EMX
p }]
o PP . .
@nghPowerAmpllﬂer \ : 'OBUJ \ 'OX
\ e 4 \\ sl /
N\ P / S
~ ap
- OoMC
AP
. ~r
Target input power: 125 W asy

There is much more to the current advanced interferometers, but in this introductory course we stop here.
If you wish to know more, a good reference is the published PhD thesis of Julia Casanueva Diaz (link).
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https://tel.archives-ouvertes.fr/tel-01625376/document
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PROPORZIONI
COSMICHE!”

GLAB!
Ml FIGURAVO QUAL~
COSA DI GROSSO, MA
NON FINO A QUESTO

IMPRESSIONAN-
TE, EH? LE GALLERIE
LATERALI SONC LUN-
GHE TRE CHILOME=-

88




Differential equation satisfied by the generating function of the Bessel functions

Starting from

,0° 0, dJ,
ox’ 0x

after multiplying throughout times t” and summing over n, we see at once that this is leads to

X (xz—nz)ano

LO2F  OF .

and the sum can be rearranged as follows

+00 o Ix
2 n n . n
n:z_oom _tn_z_oo (—t ) 7. (2) _tan;oont 7.(z)
_ 9,9 f £ T ( )—tgta—F
ot ot &= "I T Vg
JO?F  OF
=t — + t—
oz oy

and this concludes the proof.





