The transverse-traceless gauge

Edoardo Milotti

October 27, 2022

In empty space the wave equation with the Lorenz condition

$$
\begin{align*}
\square^{2} \bar{h}_{\mu \nu} & =-\frac{16 \pi G}{c^{4}} T_{\mu \nu} \tag{1}\\
\partial_{\nu} \bar{h}^{\mu \nu} & =0 \tag{2}
\end{align*}
$$

reduces to

$$
\begin{align*}
\square^{2} \bar{h}_{\mu \nu} & =0 \tag{3}\\
\partial_{\nu} \bar{h}^{\mu \nu} & =0 \tag{4}
\end{align*}
$$

We have also found that a gauge transformation leads to a coordinate system that satisfies the Lorenz condition if

$$
\begin{equation*}
\square^{2} \xi_{\mu}=\partial^{\nu} \bar{h}_{\mu \nu}, \tag{5}
\end{equation*}
$$

and that there is an infinity of ξ_{μ} that satisfy this equation. This means that we assume the Lorenz gauge and still have residual freedom to constrain further the coordinate system.

We can spell out the wave equation

$$
\begin{equation*}
\frac{\partial^{2} \bar{h}_{\mu \nu}}{\partial t^{2}}-c^{2} \nabla^{2} \bar{h}_{\mu \nu}=0 \tag{6}
\end{equation*}
$$

and look for solutions

$$
\begin{equation*}
\bar{h}^{\mu \nu}=\operatorname{Re}\left[A^{\mu \nu} \exp \left(i k_{\alpha} x^{\alpha}\right)\right] \tag{7}
\end{equation*}
$$

These trial solutions must satisfy the following constraints:

- from the symmetry of the metric tensor: $A^{\mu \nu}=A^{\nu \mu}$
- from the wave equation: $k^{\alpha} k_{\alpha}=0$, i.e., the wave 4 -vector is null; this condition implies the usual dispersion relation, i.e., waves move with speed c
- from the Lorenz condition: $k_{\nu} A^{\mu \nu}=0$

Here, we consider a wave propagating in the x^{3} direction, so that the wave 4 -vector is

$$
k^{\mu}=(k, 0,0, k) ; \quad k_{\mu}=(k, 0,0,-k)
$$

(the equality $k^{0}=k^{3}$ follows from the fact that this is a null vector), with $k=\omega / c$. With this choice of k^{μ}, we find the following equality from the Lorenz condition

$$
\begin{equation*}
k A^{\mu 0}-k A^{\mu 3}=0, \tag{8}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
A^{\mu 0}=A^{\mu 3}, \tag{9}
\end{equation*}
$$

and the A matrix writes

$$
\left(\begin{array}{cccc}
A^{00} & A^{01} & A^{02} & A^{00} \\
A^{01} & A^{11} & A^{12} & A^{01} \\
A^{02} & A^{12} & A^{22} & A^{02} \\
A^{00} & A^{01} & A^{02} & A^{00}
\end{array}\right)
$$

We see that the A matrix depends on just 6 quantities, $\left(A^{00}, A^{01}, A^{02}, A^{11}, A^{12}, A^{22}\right)$, in line with what we expect from the application of the Lorenz condition (the symmetric tensor has 10 independent components, but the Lorenz condition implies 4 equalities, and hence the number of independent components is reduced to 6).

The Lorenz gauge determines a whole class of gauge transformations, so we need to further specify the coordinate transformation. We do this by choosing

$$
\begin{equation*}
\xi^{\mu}=-\operatorname{Re}\left[i \epsilon^{\mu} \exp \left(i k_{\alpha} x^{\alpha}\right)\right], \tag{10}
\end{equation*}
$$

where k^{μ} is the same as in eq. (7), so that this is a wave-dependent gauge transformation. This trivially satisfies the Lorenz condition, and moreover from

$$
\begin{equation*}
\bar{h}_{\mu \nu}^{\prime}=\bar{h}_{\mu \nu}-\partial_{\nu} \xi_{\mu}-\partial_{\mu} \xi_{\nu}+\eta_{\mu \nu} \partial_{\alpha} \xi^{\alpha} \tag{11}
\end{equation*}
$$

we find

$$
\begin{equation*}
A^{\prime \mu \nu}=A^{\mu \nu}-k^{\nu} \epsilon^{\mu}-\epsilon^{\nu} k^{\mu}+\eta^{\mu \nu} k_{\alpha} \epsilon^{\alpha} . \tag{12}
\end{equation*}
$$

From eq. 12 and from the values of k^{μ} and $A^{\mu \nu}$ listed above, we find

$$
\begin{align*}
& A^{\prime 00}=A^{00}-k^{0} \epsilon^{0}-\epsilon^{0} k^{0}+\eta^{00} k_{\alpha} \epsilon^{\alpha}=A^{00}-k\left(\epsilon^{0}+\epsilon^{3}\right) \tag{13}\\
& A^{\prime 01}=A^{01}-k^{1} \epsilon^{0}-\epsilon^{1} k^{0}+\eta^{01} k_{\alpha} \epsilon^{\alpha}=A^{01}-k \epsilon^{1} \tag{14}\\
& A^{\prime 02}=A^{02}-k^{2} \epsilon^{0}-\epsilon^{2} k^{0}+\eta^{02} k_{\alpha} \epsilon^{\alpha}=A^{02}-k \epsilon^{2} \tag{15}\\
& A^{\prime 11}=A^{11}-k^{1} \epsilon^{1}-\epsilon^{1} k^{1}+\eta^{11} k_{\alpha} \epsilon^{\alpha}=A^{11}-k\left(\epsilon^{0}-\epsilon^{3}\right) \tag{16}\\
& A^{\prime 2}=A^{12}-k^{2} \epsilon^{1}-\epsilon^{2} k^{1}+\eta^{12} k_{\alpha} \epsilon^{\alpha}=A^{12} \tag{17}\\
& A^{\prime 22}=A^{22}-k^{2} \epsilon^{2}-\epsilon^{2} k^{2}+\eta^{22} k_{\alpha} \epsilon^{\alpha}=A^{22}-k\left(\epsilon^{0}-\epsilon^{3}\right) \tag{18}
\end{align*}
$$

In this way we have added four constraints (the values of ϵ^{μ}) and we can use eqs. (13)- (18) to reduce the independent components of A to just two. A^{12} remains unchanged by the gauge transformation, and $A^{21}=A^{12}$ by symmetry, and we can select just one more independent value. Setting

$$
\begin{align*}
& \epsilon^{0}=\left(2 A^{00}+A^{11}+A^{22}\right) / 4 k \tag{19}\\
& \epsilon^{1}=A^{01} / k \tag{20}\\
& \epsilon^{2}=A^{02} / k \tag{21}\\
& \epsilon^{3}=\left(2 A^{00}-A^{11}-A^{22}\right) / 4 k \tag{22}
\end{align*}
$$

we find the following transformed A matrix

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & A^{11} & A^{12} & 0 \\
0 & A^{12} & -A^{11} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=A^{11}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)+A^{12}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Defining two linear polarization matrices

$$
\epsilon_{+}^{\mu \nu}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) ; \quad \epsilon_{\times}^{\mu \nu}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

we can write the generic polarization state

$$
\begin{equation*}
A^{\prime \mu \nu}=A_{+} \epsilon_{+}^{\mu \nu}+A_{\times} \epsilon_{\times}^{\mu \nu} \tag{23}
\end{equation*}
$$

Both matrices are traceless and the 3 component vanishes (transverse propagation), so this choice of the gauge the transverse-traceless gauge (TT gauge). Since $\bar{h}=0$, then $h=0$ and therefore there is no difference between perturbation variables and trace-reversed perturbation variables.

In linearized gravity and in the TT gauge,

$$
\begin{align*}
\Gamma_{\mu \nu}^{\alpha} & \approx \frac{1}{2} \eta^{\alpha \gamma}\left(\partial_{\mu} h_{\gamma \nu}+\partial_{\nu} h_{\gamma \mu}-\partial_{\gamma} h_{\mu \nu}\right) \tag{24}\\
& =\frac{1}{2} \eta^{\alpha \gamma}\left(k_{\mu} h_{\gamma \nu}+k_{\nu} h_{\gamma \mu}-k_{\gamma} h_{\mu \nu}\right) \tag{25}
\end{align*}
$$

considering this expression, it is easy to see that

$$
\Gamma_{00}^{\mu}=0 \quad \Gamma_{0 \nu}^{\mu}=\frac{1}{2} \partial_{0} h_{\nu}^{\mu}
$$

Using these results, and considering a particle initially at rest, so that its initial 4 -velocity is $\dot{x}^{\mu}=(c, 0,0,0)$, the geodesic equation

$$
\begin{equation*}
\frac{d^{2} x^{\alpha}}{d \tau^{2}}+\Gamma_{\mu \nu}^{\alpha} \dot{x}^{\mu} \dot{x}^{\nu}=0 \tag{26}
\end{equation*}
$$

becomes

$$
\begin{equation*}
\frac{d^{2} x^{\alpha}}{d \tau^{2}}=-\Gamma_{\mu \nu}^{\alpha} \dot{x}^{\mu} \dot{x}^{\nu}=-\Gamma_{00}^{\alpha} c^{2}=0 \tag{27}
\end{equation*}
$$

This means that the velocity remains constant and equal to its initial value (particle at rest). In other words, in the TT gauge, a cloud of particles at rest has geodesics with constant spatial coordinate: therefore, the small spacelike vectors $\xi^{\mu}=\left(0, \xi^{1}, \xi^{2}, \xi^{3}\right)$ that mark the separations between nearby particles in the cloud remain constant.

However, the spatial separation d is not constant:

$$
\begin{align*}
d^{2}=-g_{\mu \nu} \xi^{\mu} \xi^{\nu}=-\left(\eta_{i j}+h_{i j}\right) \xi^{i} \xi^{j}=\left(\delta_{i j}-h_{i j}\right) \xi^{i} \xi^{j}= & \xi_{i} \xi^{i}-h_{i j} \xi^{i} \xi^{j} \\
& \approx\left(\xi_{i}-\frac{1}{2} h_{i k} \xi^{k}\right)\left(\xi^{i}-\frac{1}{2} h_{k}^{i} \xi^{k}\right) \tag{28}
\end{align*}
$$

The new variables $\xi^{i}-\frac{1}{2} h_{k}^{i} \xi^{k}$ mark the correct spatial separation. Note that in the TT gauge, there is no shift in the 3 direction (the propagation direction), again showing that the wave is transverse.

When we take one of these particles, originally in $\left(\xi^{1}, \xi^{2}, 0\right)$ as position marker, we see that with a passing wave with amplitude $A_{+} \epsilon_{+}^{\mu \nu}$ its position is

$$
\begin{align*}
& x^{1}=\xi^{1}-\frac{A_{+}}{2} \cos \omega t \xi^{1} \tag{29}\\
& x^{2}=\xi^{2}+\frac{A_{+}}{2} \cos \omega t \xi^{2} \tag{30}\\
& x^{3}=0 \tag{31}
\end{align*}
$$

This means that in the $\xi^{3}=0$ plane, a ring of N equally spaced reference masses at radius R and angular position $\theta_{n}=2 \pi n / N$ has separation

$$
\begin{align*}
r_{n}^{2} & =R^{2}\left(1-\frac{A_{+}}{2} \cos \omega t\right)^{2} \cos ^{2} \theta_{n}+R^{2}\left(1+\frac{A_{+}}{2} \cos \omega t\right)^{2} \sin ^{2} \theta_{n} \tag{32}\\
& \approx R^{2}\left[\left(1-A_{+} \cos \omega t\right) \cos ^{2} \theta_{n}+\left(1+A_{+} \cos \omega t\right)^{2} \sin ^{2} \theta_{n}\right] \tag{33}\\
& =R^{2}\left[1-A_{+}\left(\cos ^{2} \theta_{n}-\sin ^{2} \theta_{n}\right) \cos \omega t\right] \tag{34}\\
& =R^{2}\left(1-A_{+} \cos 2 \theta_{n} \cos \omega t\right), \tag{35}
\end{align*}
$$

and finally

$$
\begin{equation*}
r_{n} \approx R\left(1-\frac{A_{+}}{2} \cos 2 \theta_{n} \cos \omega t\right) \tag{36}
\end{equation*}
$$

We see that the perturbation variable represents a relative deformation of the distance between test masses; in the theory of elasticity this is called a strain.

