Special Relativity and notation

Edoardo Milotti

October 22, 2022

Special Relativity (SR) is a necessary prerequisite of this course and is taken for granted. In this initial chapter I set out the conventions that are followed in the lecture notes.

- For clarity, I always include all the physical constant, therefore c, G, etc., are always spelled out explicitly.
- I assume the $(+,-,-,-)$ signature, i.e., the space-time interval is defined by $d s^{2}=c^{2} d t^{2}-$ $d x^{2}-d y^{2}-d z^{2}$.
- Latin letters indicate space variables in 3D space or in a generic n-dimensional space, while greek letters denote space-time variables in 4D space.
- The previous items imply that the Minkowski metric is specified by the following metric tensor

$$
\eta_{\mu \nu}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

i.e., $d s^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}$.

- Indexes follow the Einstein convention: repeated indexes imply a summation. For example, when we denote the inverse metric tensor with $\eta_{\mu \nu}$, and notice that

$$
\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),
$$

then we conclude that the matrix representation of $\eta_{\mu \nu}$ is the same as that of its inverse $\eta^{\mu \nu}$, and clearly $\eta^{\mu \alpha} \eta_{\alpha \nu}=\delta_{\nu}^{\mu}$.

- Lorentz transformations along a specific axis (x, in this case) are defined by

$$
\left(\begin{array}{l}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
c t \\
x \\
y \\
z
\end{array}\right)
$$

with $\beta=v / c$ and $\gamma=1 / \sqrt{1-\beta^{2}}$, as usual.

- Proper time τ is time in the rest frame of the observer. Therefore, if something is at rest in the observer's frame (i.e., $d x=d y=d z=0$), $d s^{2}=c^{2} d \tau^{2}$.

Problem: express the space-time interval $d s^{2}$ of SR space-time in spherical coordinates. (Solution: $d s^{2}=c^{2} d t^{2}-d r^{2}-r^{2} d \theta^{2}-r^{2} \sin ^{2} \theta d \varphi^{2}$).

To introduce dynamics, we must define first a 4 -vector velocity. This is done as follows:

$$
U^{\mu}=\frac{d x^{\mu}}{d \tau}=\left(\begin{array}{c}
c d t / d \tau \\
d x / d \tau \\
d y / d \tau \\
d z / d \tau
\end{array}\right)
$$

Since

$$
\frac{d x^{0}}{d \tau}=\frac{c d t}{d \tau}=c \gamma ; \quad \frac{d x^{i}}{d \tau}=\frac{d x^{i}}{d t} \frac{d t}{d \tau}=\gamma v^{i}
$$

then

$$
U^{\mu}=\binom{\gamma c}{\gamma \mathbf{v}} .
$$

Here we note in passing that

$$
\eta_{\mu \nu} U^{\mu} U^{\nu}=\gamma^{2} c^{2}-\gamma^{2} v^{2}=c^{2} \gamma^{2}\left(1-\frac{v^{2}}{c^{2}}\right)=c^{2}
$$

4-momentum is defined as follows

$$
P^{\mu}=m U^{\mu}=\binom{m \gamma c}{\gamma m \mathbf{v}}=\binom{E / c}{\mathbf{p}}
$$

therefore

$$
\eta_{\mu \nu} P^{\mu} P^{\nu}=\frac{E^{2}}{c^{2}}-p^{2}=m^{2} c^{2}
$$

or also

$$
E^{2}=m^{2} c^{4}+c^{2} p^{2}
$$

Finally, the special relativistic extension of Newton's second law is

$$
F^{\mu}=\frac{d P^{\mu}}{d \tau}
$$

