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The equivalence principle (in essence, the indistinguishability between gravitational pull and
dynamical acceleration) implies that the effects of gravity must be associated with a curvature of
space-time. Mathematically, this means that we must turn to the manifolds studied by Riemann.

• A Riemann manifold can be loosely described as a smoothly curved space that is locally
flat.

• A manifold is n-dimensional when the position of a point is specified by n coordinates.

• Not all continuous spaces are manifolds. E.g., a one-dimensional line emerging from a plane
is not a manifold; two cones joined at the apex are not a manifold (parts of these objects
are not locally Euclidean).

• A manifold can be embedded in a larger space and display extrinsic curvature.

• A manifold can exist without any embedding at all and display intrinsic curvature.

• A manifold can display both extrinsic and intrinsic curvature.

• Manifolds exist that have extrinsic curvature and no intrinsic curvature.

• Riemann discovered that the metric tensor gµν = eµ · eν contains all the information
necessary to describe a manifold.

• The metric tensor is symmetric, i.e., gµν = gνµ.

• Riemann manifolds have positive-definite metrics; the metric of space-time is not positive-
definite, and it is described by a pseudo-Riemann manifold.

• The line element of a Riemann manifold is given by dℓ2 = gijdx
idxj .

• The description of Riemann manifolds requires tensor calculus.

• The manifolds of General Relativity are pseudo-Riemann because the metric is not positive-
definite.
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