Overview of Riemann manifolds

Edoardo Milotti

October 22, 2022

The equivalence principle (in essence, the indistinguishability between gravitational pull and dynamical acceleration) implies that the effects of gravity must be associated with *a curvature of space-time*. Mathematically, this means that we must turn to the manifolds studied by Riemann.

- A Riemann manifold can be loosely described as a smoothly curved space that is locally flat.
- A manifold is *n*-dimensional when the position of a point is specified by *n* coordinates.
- Not all continuous spaces are manifolds. E.g., a one-dimensional line emerging from a plane is not a manifold; two cones joined at the apex are not a manifold (parts of these objects are not locally Euclidean).
- A manifold can be embedded in a larger space and display **extrinsic curvature**.
- A manifold can exist without any embedding at all and display intrinsic curvature.
- A manifold can display both extrinsic and intrinsic curvature.
- Manifolds exist that have extrinsic curvature and no intrinsic curvature.
- Riemann discovered that the *metric tensor* $g_{\mu\nu} = \mathbf{e}_{\mu} \cdot \mathbf{e}_{\nu}$ contains all the information necessary to describe a manifold.
- The metric tensor is symmetric, i.e., $g_{\mu\nu} = g_{\nu\mu}$.
- Riemann manifolds have positive-definite metrics; the metric of space-time is not positive-definite, and it is described by a pseudo-Riemann manifold.
- The line element of a Riemann manifold is given by $d\ell^2 = g_{ij}dx^i dx^j$.
- The description of Riemann manifolds requires tensor calculus.
- The manifolds of General Relativity are pseudo-Riemann because the metric is not positivedefinite.