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Here we consider the noise sources that affect the interferometer sensitivity. For this handout,
I have taken portions of text from B. Schutz and B. S. Sathyaprakash, Physics, Astrophysics
and Cosmology with Gravitational Waves, Living Revs. Relativity 12 (2009), 2; M. Maggiore,
Gravitational Waves, Vol. 1: Theory and Experiments, Oxford University Press (2008), and P.
Saulson, Thermal noise in mechanical experiments, PRD 42 (1990) 2437.

Noise is extremely relevant in gravitational wave interferometers. To see why, consider a
detector like Virgo, with an arm length of 3 km: it responds to a gravitational wave with an
amplitude of 1072! with

SLaw ~ hL ~ 3 x 10~ ®¥m. (1)

As we have already seen, we can increase the effective path length inside each interferometer arm
by using a Fabry-Perot resonator, which increases the effective path length by a factor F /7, as
long as the period of the gravitational wave is much less than characteristic time of the resonatoxﬂ
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In this case, taking the finesse of the Virgo FP cavities, F & 450, the photon path is multiplied
by about 150, and we find that

dLgw ~ 4.5 x 107 16m, (3)

and we must be able to control noise at this level.

The detector noise level also characterizes the spectral sensitivity, figure[T]shows the sensitivity
curves of the three interferometers of the LVC network near the end of the O3 run (March 2019).

1 Basic description of the main noise sources

This section lists the main categories of noise that affect the interferometers. They do not include
more common noise source like electronic noise that must also be kept in check.

Ground vibration. External mechanical vibrations must be screened out. These are a se-
rious problem for interferometers, because interferometers bounce light back and forth
between the mirrors, and so each reflection introduces further vibrational noise. Sus-
pension/isolation systems are based on pendulums. A pendulum is a good

Tt can be shown that this holds if the frequency of the gravitational wave fow < ¢/27L, and that in the
opposite case the sensitivity is decreased by a factor v/1 + (faw/frp)?, where frp = 1/477p, because we add
the effects of the gravitational wave over more than one period.
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Figure 1: This plot represents the median noise of each interferometer measured over the course
of the day. The measured output of each interferometer, calibrated to units of gravitational
wave strain, is shown as a function of frequency. Since the amplitude of a gravitational wave
signal changes with frequency, the shape of this curve determines each detector’s sensitivity to
incoming gravitational waves. This plot is often referred to as the “noise curve”. (Plot from the
Gravitational Wave Open Science Center summary status page, https://www.gw-openscience.
org/detector_status/day/20200301/)

mechanical filter for frequencies above its natural frequency. By hanging the mir-
rors on pendulums of about 0.5 m length, one achieves filtering above a few Hertz. Since
the spectrum of ground noise falls at higher frequencies, this provides suitable isolation.
These systems can be very sophisticated. The most ambitious multi-stage isolation system
has been developed for the Virgo detector.

Thermal noise. Vibrations of the mirrors and of the suspending pendulum can mask gravi-
tational waves. As with vibrational noise, this is increased by the bouncing of the light
between the mirrors. In the gravitational interferometers, the pendulum suspensions have
thermal noise at a few Hertz, so measurements are made above 10 Hz. Internal vibrations
of the mirrors have natural frequencies of several kHz, which sets an effective upper limit to
the observing band. By ensuring that both kinds of oscillations have very high Q, one can
confine most of the vibration energy to a small bandwidth around the resonant frequency,
so that at the measurement frequencies the vibration amplitudes are extremely small. This
allows interferometers to operate at room temperature. But mechanical @s of 107 or higher
are required, and this is technically demanding.

Thermal effects produce other disturbances besides vibration. Some of the mirrors in inter-
ferometers are partly transmissive, as is the beam splitter. A small amount of light power
is absorbed during transmission, which raises the temperature of the mirror and changes its
index of refraction. The resulting “thermal lensing” can ruin the optical properties of the
system, and random fluctuations in lensing caused by time-dependent thermal fluctuations
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Shot

(thermo-refractive noise) can appear at measurement frequencies. These effects can limit
the amount of laser power that can be used in the detector. Other problems can arise from
heating effects in the multiple-layer coatings that are applied to the reflective surfaces of
mirrors.

noise. The photons that are used to do interferometry are quantized, and so they arrive
at random and make random fluctuations in the light intensity that can look like a gravi-
tational wave signal. The more photons one uses, the smoother the interference signal will
be. As a random process, the error improves with the square root of the number N of
photons. Using light with a wavelength A\, one can expect to measure to an accuracy of

6 Lanot ~ A/ (21VN) (4)

(usually infrared light with A ~ 1um is actually used). To measure at a frequency f, one
has to make at least 2f measurements per second, so one can accumulate photons for a
time 1/2f (the sampling time). With light power P, one gets N = P/(hc/))/(2f) photons.
In order that 6 Lgpo¢ should be below 10~'3m, one needs high laser power. Power-recycling
techniques overcome this problem, by using light efficiently. An interferometer actually
has two places where light leaves. One is where the interference is measured, the difference
port. The other is the sum of the two return beams on the beam splitter, which goes
back towards the input laser. Normally one makes sure that no light hits the interference
sensor, so that only when a gravitational wave passes does a signal register there. This
means that all the light normally returns toward the laser input, apart from small losses
at the mirrors. By placing a power-recycling mirror in front of the laser, one can reflect
this wasted light back in, allowing power to build up in the arms until the laser merely
resupplies the mirror losses. This can dramatically reduce the power requirement for the
laser. Current interferometers work with laser powers > 30W.

Quantum noise. Shot noise is a quantum noise, and like all quantum noises there is a corre-
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sponding conjugate noise. As laser power is increased to reduce shot noise, the position
sensing accuracy improves, and one eventually comes up against the Heisenberg uncertainty
principle: the fluctuations of the momentum transferred to the mirror by the measurement
leads to a disturbance that can mask a gravitational wave. Thus, the uncertainty principle
defines the Standard Quantum Limit (SQL) to gravitational wave measurements. However
the SQL can be beaten! To reduce the backaction pressure fluctuation, the quantum state
of the light can be modified by “squeezing” the Heisenberg uncertainty ellipse, in order to
reduce the effect of this uncertainty on the variable being measured, at the expense of its
(unmeasured) conjugate. The key point here is that we are using a quantum field (light) to
measure an effectively classical quantity (gravitational wave amplitude), so we do not need
to know everything about our quantum system: we just need to reduce the uncertainty in
that part of the quantum field that responds to the gravitational wave at the readout of
our interferometer. Squeezing is currently implemented in both LIGO interferometers and
in Virgo.

Noise modeling: thermal noise

The noises described in the previous section can be modeled, and their mechanisms can be
manipulated to mitigate them. Here I consider the case of thermal noise, which brings us close
to another facet of Einstein’s research, that on stochastic processes (see figure .



5. Uber die von der molekularkinetischen Theorie
der Wirme geforderte Bewegung von in ruhenden
Tlitssigkeiten suspendierten Teilchen;
von A. Einstein.

In dieser Arbeit soll gezeigt werden, daB nach der molekular-
kinetischen Theorie der Warme in Fliissigkeiten suspendierte
Kérper von mikroskopisch sichtbarer GroBe infolge der Mole-
kularbewegung der Wirme Bewegungen von solcher Grife
ausfiihren miissen, daB diese Bewegungen leicht mit dem
Mikroskop nachgewiesen werden konnen. Ks ist moglich, daB
die hier zu behandelnden Bewegungen mit der sogenannten
,Brownschen  Molekularbewegung® identisch sind; die mir
erreichbaren Angaben iber letztere sind jedoch so ungenau,
daB ich mir hieriiber kein Urteil bilden konnte.

Figure 2: The starting lines of Einstein’s 1905 paper on Brownian motion.

Three years after Einstein’s paper, Paul Langevin devised a very different description of
Brownian motion, in the guise of a stochastic differential equation in the time domain, the
one-dimensional Langevin equation (see figure [3)

Figure 3: The starting lines of Langevin’s 1908 paper.



dv

m% = —you(t) + n(t) (5)

where ~ is the friction coefficient and n is a zero-mean, Gaussian, white noise process with
correlation function (n(t)n(t")) = o26(t' — t"). This stochastic differential equation can be
solved by taking first the ensemble average
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which can be solved to find the average speed
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Next, we multiply by z(¢) and take the ensemble average again

<x‘§;> = —%(mv} (8)

and we note that
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so that eq. becomes
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We simplify the last equation using the equipartition theorem

%m<v2> = %kBT
and we find P2 e ST
<M>+m<ﬁ>: m (12)
which we simplify using an integrating factor
4 (s 2. -

and finally we integrate with the initial conditions x(0) = 0, and v(0) = vp, which imply
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and

2kpT
<x2> — 2B (t + mefﬁ/m _ m) (15)
v v v
which for long times becomes
2kpT
(x?) ~ B¢ (16)
Y

Now, let’s go back to the Langevin equation and integrate it formally using the same
integrating factor
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and using again the equipartition theorem,

kgT 2
(W) =2~ = 7 (20)
m 2ym
we find
0?2 = 2vkpT. (21)
The last result means that the one-sided spectral density of the noise process is

Sn(w) = 4kpTy (22)

which confirms that n is a white noise.

Now consider a thermally excited damped harmonic oscillator described by the equation

miE —yi + kx = n(t) (23)
then the previous results imply that the power spectral density of x is
Sn
5uw) = ) (21)

(k — mw?)? 4+ v2w?
A sample power spectral density (from Saulson) is shown in figure
The latest result is an example of fluctuation-dissipation theorem, so called because it relates

fluctuations (described by the power spectral density) with dissipation in the system (expressed
by the friction coefficient).

Based on this concepts, many thermal noise sources inside the interferometers have been
studied and characterized.
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FIG. 2. Thermal noise power spectra for two mechanical os-
cillators, each with m =1 g, resonant frequency w,=1s~', and
Q=100. The solid line shows the spectrum for an oscillator
with damping proportional to velocity. The dash-dotted line
shows the spectrum for an oscillator with internal damping
characterized by constant ¢(w). The units of the power spectral
density are cm?/Hz and of the frequency axis are s '.
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