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In this second handout on noise sources, I explore quantum noise, i.e. photon shot noise and
quantum radiation pressure noise, I introduce the Standard Quantum Limit (SQL), and briefly
describe the methods to mitigate it.

Shot noise

Let N, be the average number of photons with energy hw, that reach the detector from the
laser source during time 7. Then, the average power measured during this observation time is

1
P = N, h, (1)

It is fair to assume that the actual number of photons is a Poisson variate with variance equal to
the average N, so that the standard deviation is AN, = /N,. The corresponding fluctuation
of the measured power is
1/2
1 hw
APsot = =/ Nyhwy = | —P (2)
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Now, we want to assess the effect of this noise on GW measurements by comparing it with the
power received by the photodiode when a GW signal is present, and we use an oversimplified

model of GW interferometer, which consists in a simple Michelson interferometer. Then, in the
absence of signal, one finds (see eq. (37)) in the Appendix) that the output power is

P,
P= 70[1 — cos(2kyAL)] = Pysin?(k,AL) 3)
so that
o 1/2
A]Dshot = <TP0> ‘Sln(k’yAL” (4)

When a GW signal is present, we find that the power change is (see eq. (38) in the Appendix)

4mL
APy = Py sin(QkA,AL)ALhO (5)
gl
and therefore the power signal-to-noise ratio (SNR) is
S _APbew _ (Th 1/2\cos(k ALy L, (6)
N~ APt \ oy ’ P



When we take as a reference the (unrealistic) value |cos(k,AL)| = 1/v/2 the last formula

reduces to
S _ (TR \axL, (T -
N\ 2hw, Ay 0T\ ot (w) 0

In general, we notice that the higher the power, the larger the SNR: powerful lasers reduce the
impact of shot noise! We also see that in this case the amplitude spectral density of shot noise
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Figure 1: Pictorial representation of shot noise and radiation pressure noise.

Radiation pressure noise

Using the same formalism we can compute the radiation pressure noise. This is the noise due
to the fluctuations of radiation pressure on the mirrors of the interferometer, due to the uneven
flow of photons, and it is clearly related to the shot noise.

When a laser beam impinges on a mirror, there is a flow of photons that transfer momentum
to the mirror itself. Since the momentum transferred to the mirror by each reflected photon

1We understand the role of T' a follows. In a stationary zero-mean process z(t), the spectral density is related
to the variance of the process by the Wiener-Kintchine theorem

+oo .
Sth= [ (eOavpe > ar

— 0o

In the case of a white noise R(t) = 023(t), therefore — approximating the delta function with a rectangular pulse
of width T', which is the sampling time of the order of 10~3 s — we find

S5(f) =

IR

in the case of a two-sided power spectral density, or also

S(f) ~ =

for a one sided power spectral density.



is 2hw, /c the total momentum transferred by N, photons in a time T' is 2N, hw./c and the
corresponding force exerted on the mirror is

2y _ 2P

F=N. = 9
v cT c ( )
This means that the fluctuation of the force due to the uneven flow of photons is
9 heo 1/2
AF = APy =2 | =L P, 1
¢ shet (C2T O) (10)

which does not depend on the GW frequency (w) and therefore is a white noise with spectral
density
Sp(w) = (AF)? x 2T (11)
where the T factor accounts for the finite observation time (replacement for the delta function)
and the factor 2 means that we are using a one-sided spectral density.
Now we can use a formula that we derived in the previous handout on Noise Sources

Sp(w)

Sa(w) = (k — mw?)? + 1202

(12)

which we apply to the fluctuations of the mirror position and to the force noise. We also assume
that for our mirrors the elastic constant and the friction constant are negligible, so that

Sp(w)
So(w) = 252 (13)
or also, when we take the amplitude spectral density
Sy AFVRT hawy, \Y? 1
Sy (w) ~ =E (;J) = — =2 (22”130) 5 (14)
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The Standard Quantum Limit (SQL)

In the previous sections we found that the amplitude disturbance due to shot noise scales as
1/v/Py and has a white spectrum, while the disturbance due to radiation pressure scales as
V/Py/mw? (therefore it is not a white noise). The actual sensitivity of the apparatus must take
into account the response to a GW, and this means that we must multiply times the trans-
fer function of the interferometer to obtain the sensitivity curve; this operation transforms the
high-frequency part of the spectrum which is mostly contributed by shot noise into a non-flat,
degrading sensitivity (the S/N decreases). Taking both terms into account shows that there is
a minimum overall noise that corresponds to the so-called Standard Quantum Limit. The SQL
depends on laser power, as indicated by the formulas and pictorially shown in figure

Squeezing

The SQL can be beaten by squeezing the laser light. The basics of squeezing of light are
covered in the tutorial by Saleh and Teich, Squeezed states of light, 1 Quantum Opt. (1989)
153. The use of light squeezing to beat the SQL is explained by S. Hild, A Basic Introduction
to Quantum Noise and Quantum-Non-Demolition Techniques, in M. Bassan (ed.) Advanced In-
terferometers and the Search for Gravitational Waves, Lectures from the First VESF School on
Advanced Detectors for Gravitational Waves Springer (2014).
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Figure 2: Pictorial representation of the interplay of shot noise and radiation pressure noise that
yields the SQL.

=== (1) Quantum noise

== (2) Seismic noise

== (3) Gravity Gradients

== (4) Suspension thermal noise

== (5) Coating Brownian noise H
(6) Coating Thermo-optic noise
(7) Substrate Brownian noise H

: (8) Excess Gas

| | === (9) Total noise ]

i e e Ml el e e o

T [ s RS [ PR P

| | [ B

1

|

|

g

****** = = ===
| [ |

Strain [1/VHz]

4T AN
4L —_ —
—H+4--
H+4--X--
JuLii(Z)i\ 7\L
STy T \e
24 L W N
10 5(6)}?%35’:‘25;3,\5359&35
il (:) ::}::\;,}:}:‘ C
F—l—1— A4+ |- —1— =\ —1—1—1H
10' 10° 10° 10°

Frequency [Hz]

Figure 3: Noise budget of the advanced LIGO broadband configuration as described in R.Abbott
et al., AdvLIGO Interferometer Sensing and Control Conceptual Design, Technical note LIGO-
T070247-01-I (2008)



Appendix 1: time domain analysis of the effect of a GW on
a Michelson interferometer
To make things simple, we consider a basic Michelson interferometer without FP cavities in the

arms. A photon traveling in the = direction, along one of the axes of a + polarized GW, follows
a null line element so that

1
cdt = <1 + 2h(t)) dx. (15)
where
h(t) = ho coswt (16)
We can separate variables as follows
dt 1
doe = — 7 ~ cdt (1 - 2h(t)> (17)
1+ ih(t)

and integrate over the first pass, from the beamsplitter to the far mirror in the x direction

L, = c/tt (1 _ ;h(t)) dt = e(tr — to) — ;/tt h(t)dt. (18)

The integration along the second pass, from the far mirror back to the beamsplitter is similar,
with a sign reversal for the velocity and with the reversal of the integration limits for the x
integration,

L, = —c/: (1 - ;h@)) dt = —c(ty — t1) + g /tt h(t)dt. (19)

Therefore, subtracting the second equation from the first we obtain

ta
2L, = elty — to) ~ & / h(t)dt, (20)
to
i.e.,
2L, 1 [
ty —tg = + 7/ h(t)dt, (21)
c 2 Ji,

The integral is already order h, therefore we can integrate with to ~ to + 2L./c, i.e.,

2L, ho [fot?le/e 2L, h [ 2L,
to — ty = 4+ 0 coswt dt = +0{sin w<t0+ )} —sinwto}. (22)
c 2 Ji c 2w i c

The expression in curly brackets can be simplified to

. Lyw [ ( Lgc)'
2 sin cos |wilto+—1]|,
c c /]

and therefore we find

2L,  hy . Ly L,
to —tg = 20 gin =2 cos [w <t0 + ﬂ (23)
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2L, L, sin(L,w/c) L,
= — ———— h|t — . 24
c + ¢ Lypw/e ( ot c ) (24)



Along the y direction the sign of h is reversed so that

2L, Ly sin(Lyw/c) L
to —tg=—2 - XV pltg+ 2. 25
2 ¢ ¢ Lyw/e (0+ c ) (25)

We combine the x and y information as follows: we require that the time of arrival of the two
beams on the beamsplitter be the same t = t5, and using the results above, we find the departure
time tg. First, we note that the argument of the strain

L L,

to+ = ~t— 22, (26)
C (&
then,
(z) 2L, L, . Ly
5 - - sinc(Lzw/c) c (27)
2L, L L
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The spatial position is the same, so the relative phase between the x and y electric fields of
the laser beam depends on time only. In particular, we find

E®)(t) = _Bo exp <7iw7t((]x)) = —exp {iwv <t _ e &sinc(me/c) h<t - Lx>)] (29)
c c

2 c
EW(t) = —|—% exp (—iwvtgy)) = +exp {—iwv <t - % + %sinc(Lyw/c) h(t - Lg’))] .
(30)
where w,, is the (angular) frequency of the laser light.

We introduce the mean length L = (L, + L,)/2 and the difference AL = L, — L,;, so that
2L, =2L + AL and 2L, = 2L — AL. Then the phases become

b = :t _ 2 +C AL} _w Bt fL/Qsmc[(L + AL/2)w/d] h<t - L+CAL/2> (31)
~ :t - QCL] ke AL- {hokwL sinc (wiﬂ coslu(t — L/c) (32)
and
by = :t 2k _CAL} oo EEAL2 oL = AL/ h(t - L_CAL/Q) (33)
~ :t _ Qﬂ + kAL + [hOkWL sinc (wi)] coslw(t — L)c)] (34)

Thus, the total electric field is
E . ,
Eeor(t) = E@ () + EW(t) = 7 [-e7 0 4 7] (35)

_ iEyexpw, {_m (t - 25)} sin [k, AL + Ad(1)] (36)



where Ej is the amplitude of the field as at the beamsplitter input, and

Ao(t) = [hokwL sinc (wfﬂ coslw(t — L)c)]

is the GW-dependent phase. Notice also that the k,AL term is associated with the Schnupp
asymmetry.

From eq. we find that the output power is

P
P = Pysin? [k, AL + Ap(t)] = ?0 {1 — cos [2k, AL + 2A¢(t)]} (37)
and that the change in output power due to a GW signal is
AP = Pysin(2k,AL)A¢(t) < 2P sin(2kyAL)hokyL = Py sin(?k,yAL)élj\T—Lho (38)
¥

Appendix 2: Stokes treatment of reflection and refraction
Note: this text is adapted from E. Hecht, Optics, 4th ed., Addison-Wesley (2002).

Figure [4] shows rays reflected and refracted, and the way the refraction and transmission
coefficients modify amplitudes. Primed coefficients corresponds to incidence from the higher
density medium. The middle panel shows the time-reversed ray configuration. The right panel
shows the superposition of left and middle panel.

Figure 4: Figure illustrating the Stokes treatment of reflection and transmission coefficients.

From the superposition diagram we find

Eyitt' + Egjrr = Ey; (39)
Eyirt + Egitr’ =0 (40)
And therefore
r=—r (41)
t'=1-r? (42)

This treatment holds for near normal refraction, and it can be modified accordingly for non-
normal incidence.



