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In this second handout on noise sources, I explore quantum noise, i.e. photon shot noise and
quantum radiation pressure noise, I introduce the Standard Quantum Limit (SQL), and briefly
describe the methods to mitigate it.

Shot noise

Let Nγ be the average number of photons with energy ℏωγ that reach the detector from the
laser source during time T . Then, the average power measured during this observation time is

P =
1

T
Nγℏωγ (1)

It is fair to assume that the actual number of photons is a Poisson variate with variance equal to
the average Nγ , so that the standard deviation is ∆Nγ =

√
Nγ . The corresponding fluctuation

of the measured power is

∆Pshot =
1

T

√
Nγℏωγ =

(
ℏωγ

T
P

)1/2

(2)

Now, we want to assess the effect of this noise on GW measurements by comparing it with the
power received by the photodiode when a GW signal is present, and we use an oversimplified
model of GW interferometer, which consists in a simple Michelson interferometer. Then, in the
absence of signal, one finds (see eq. (37) in the Appendix) that the output power is

P =
P0

2
[1− cos(2kγ∆L)] = P0 sin

2(kγ∆L) (3)

so that

∆Pshot =

(
ℏω
T

P0

)1/2

| sin(kγ∆L)| (4)

When a GW signal is present, we find that the power change is (see eq. (38) in the Appendix)

∆PGW = P0 sin(2kγ∆L)
4πL

λγ
h0 (5)

and therefore the power signal-to-noise ratio (SNR) is

S

N
=

∆PGW

∆Pshot
=

(
TP0

ℏωγ

)1/2

| cos(kγ∆L)|4πL
λγ

h0 (6)
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When we take as a reference the (unrealistic) value | cos(kγ∆L)| = 1/
√
2 the last formula

reduces to

S

N
=

(
TP0

2ℏωγ

)1/2
4πL

λγ
h0 =

(
T

Sshot(ω)

)1/2

h0 (7)

In general, we notice that the higher the power, the larger the SNR: powerful lasers reduce the
impact of shot noise! We also see that in this case the amplitude spectral density of shot noise
is1

S
1/2
shot(ω) =

(
2ℏωγ

P0

)1/2
λγ

4πL
(8)

Figure 1: Pictorial representation of shot noise and radiation pressure noise.

Radiation pressure noise

Using the same formalism we can compute the radiation pressure noise. This is the noise due
to the fluctuations of radiation pressure on the mirrors of the interferometer, due to the uneven
flow of photons, and it is clearly related to the shot noise.

When a laser beam impinges on a mirror, there is a flow of photons that transfer momentum
to the mirror itself. Since the momentum transferred to the mirror by each reflected photon

1We understand the role of T a follows. In a stationary zero-mean process x(t), the spectral density is related
to the variance of the process by the Wiener-Kintchine theorem

S(f) =

∫ +∞

−∞
⟨x(0)x(t)⟩e−2πiftdt

In the case of a white noise R(t) = σ2δ(t), therefore – approximating the delta function with a rectangular pulse
of width T , which is the sampling time of the order of 10−3 s – we find

S(f) ≈
σ2

T

in the case of a two-sided power spectral density, or also

S(f) ≈
σ2

2T

for a one sided power spectral density.
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is 2ℏωγ/c the total momentum transferred by Nγ photons in a time T is 2Nγℏωγ/c and the
corresponding force exerted on the mirror is

F = Nγ
2ℏωγ

cT
=

2P0

c
. (9)

This means that the fluctuation of the force due to the uneven flow of photons is

∆F =
2

c
∆Pshot = 2

(
ℏωγ

c2T
P0

)1/2

(10)

which does not depend on the GW frequency (ω) and therefore is a white noise with spectral
density

SF (ω) = (∆F )2 × 2T (11)

where the T factor accounts for the finite observation time (replacement for the delta function)
and the factor 2 means that we are using a one-sided spectral density.

Now we can use a formula that we derived in the previous handout on Noise Sources

Sx(ω) =
Sn(ω)

(k −mω2)2 + γ2ω2
(12)

which we apply to the fluctuations of the mirror position and to the force noise. We also assume
that for our mirrors the elastic constant and the friction constant are negligible, so that

Sx(ω) ≈
SF (ω)

m2ω4
(13)

or also, when we take the amplitude spectral density

S1/2
x (ω) ≈

S
1/2
F (ω)

mω2
=

∆F
√
2T

mω2
= 2

(
2
ℏωγ

c2
P0

)1/2
1

mω2
(14)

The Standard Quantum Limit (SQL)

In the previous sections we found that the amplitude disturbance due to shot noise scales as
1/
√
P0 and has a white spectrum, while the disturbance due to radiation pressure scales as√

P0/mω2 (therefore it is not a white noise). The actual sensitivity of the apparatus must take
into account the response to a GW, and this means that we must multiply times the trans-
fer function of the interferometer to obtain the sensitivity curve; this operation transforms the
high-frequency part of the spectrum which is mostly contributed by shot noise into a non-flat,
degrading sensitivity (the S/N decreases). Taking both terms into account shows that there is
a minimum overall noise that corresponds to the so-called Standard Quantum Limit. The SQL
depends on laser power, as indicated by the formulas and pictorially shown in figure 2.

Squeezing

The SQL can be beaten by squeezing the laser light. The basics of squeezing of light are
covered in the tutorial by Saleh and Teich, Squeezed states of light, 1 Quantum Opt. (1989)
153. The use of light squeezing to beat the SQL is explained by S. Hild, A Basic Introduction
to Quantum Noise and Quantum-Non-Demolition Techniques, in M. Bassan (ed.) Advanced In-
terferometers and the Search for Gravitational Waves, Lectures from the First VESF School on
Advanced Detectors for Gravitational Waves Springer (2014).
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Figure 2: Pictorial representation of the interplay of shot noise and radiation pressure noise that
yields the SQL.
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Fig. 11.1 Noise budget of the advanced LIGO broadband configuration as described in Abbott et al.
[5]. The coloured lines (1–8) represent the amplitude spectral density of various noise components,
whereas the trace labelled “Total Noise” shows the overall instrument sensitivity. For all frequencies
above about 12 Hz quantum noise is the dominating noise source (This figure was produced using
the GWINC software [6])

1. You need to make sure your test masses are quieter than the signal you
want to observe.

2. You need to make sure that the test mass position can be read out to the
required accuracy, without introducing any significant level of back action
noise.

In order to satisfy the first of the requirements stated above we employ a myr-
iad of sophisticated techniques and we exercise the greatest care when it comes to
providing seismic isolation of the test masses, put them into ultra-high vacuum to
reduce their acoustic coupling, and use ultra-low loss materials for the test masses
as well as for their suspensions to reduce the influence of thermal noise. The second
design principle relates fundamentally the optical readout and the interferometric
measurement of the differential arm length degree of freedom of the GW detector.

Figure 3: Noise budget of the advanced LIGO broadband configuration as described in R.Abbott
et al., AdvLIGO Interferometer Sensing and Control Conceptual Design, Technical note LIGO-
T070247-01-I (2008)
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Appendix 1: time domain analysis of the effect of a GW on
a Michelson interferometer

To make things simple, we consider a basic Michelson interferometer without FP cavities in the
arms. A photon traveling in the x direction, along one of the axes of a + polarized GW, follows
a null line element so that

cdt =

(
1 +

1

2
h(t)

)
dx. (15)

where
h(t) = h0 cosωt (16)

We can separate variables as follows

dx =
cdt

1 +
1

2
h(t)

≈ cdt

(
1− 1

2
h(t)

)
(17)

and integrate over the first pass, from the beamsplitter to the far mirror in the x direction

Lx = c

∫ t1

t0

(
1− 1

2
h(t)

)
dt = c(t1 − t0)−

c

2

∫ t1

t0

h(t)dt. (18)

The integration along the second pass, from the far mirror back to the beamsplitter is similar,
with a sign reversal for the velocity and with the reversal of the integration limits for the x
integration,

−Lx = −c

∫ t2

t1

(
1− 1

2
h(t)

)
dt = −c(t2 − t1) +

c

2

∫ t1

t0

h(t)dt. (19)

Therefore, subtracting the second equation from the first we obtain

2Lx = c(t2 − t0)−
c

2

∫ t2

t0

h(t)dt, (20)

i.e.,

t2 − t0 =
2Lx

c
+

1

2

∫ t2

t0

h(t)dt, (21)

The integral is already order h, therefore we can integrate with t2 ≈ t0 + 2Lx/c, i.e.,

t2 − t0 ≈ 2Lx

c
+

h0

2

∫ t0+2Lx/c

t0

cosωt dt =
2Lx

c
+

h0

2ω

{
sin

[
ω

(
t0 +

2Lx

c

)]
− sinωt0

}
. (22)

The expression in curly brackets can be simplified to

2 sin
Lxω

c
cos

[
ω

(
t0 +

Lx

c

)]
,

and therefore we find

t2 − t0 =
2Lx

c
+

h0

ω
sin

Lxω

c
cos

[
ω

(
t0 +

Lx

c

)]
(23)

=
2Lx

c
+

Lx

c

sin(Lxω/c)

Lxω/c
h

(
t0 +

Lx

c

)
. (24)
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Along the y direction the sign of h is reversed so that

t2 − t0 =
2Ly

c
− Ly

c

sin(Lyω/c)

Lyω/c
h

(
t0 +

Ly

c

)
. (25)

We combine the x and y information as follows: we require that the time of arrival of the two
beams on the beamsplitter be the same t = t2, and using the results above, we find the departure
time t0. First, we note that the argument of the strain

t0 +
Lx

c
≈ t− Lx

c
, (26)

then,

t
(x)
0 = t− 2Lx

c
− Lx

c
sinc(Lxω/c) h

(
t− Lx

c

)
(27)

t
(y)
0 = t− 2Ly

c
+

Ly

c
sinc(Lyω/c) h

(
t− Ly

c

)
. (28)

The spatial position is the same, so the relative phase between the x and y electric fields of
the laser beam depends on time only. In particular, we find

E(x)(t) = −E0

2
exp

(
−iωγt

(x)
0

)
= − exp

[
−iωγ

(
t− 2Lx

c
− Lx

c
sinc(Lxω/c) h

(
t− Lx

c

))]
(29)

E(y)(t) = +
E0

2
exp

(
−iωγt

(y)
0

)
= +exp

[
−iωγ

(
t− 2Ly

c
+

Ly

c
sinc(Lyω/c) h

(
t− Ly

c

))]
.

(30)

where ωγ is the (angular) frequency of the laser light.

We introduce the mean length L = (Lx + Ly)/2 and the difference ∆L = Lx − Ly, so that
2Lx = 2L+∆L and 2Ly = 2L−∆L. Then the phases become

ϕx = ωγ

[
t− 2L+∆L

c

]
− ωγ

L+∆L/2

c
sinc[(L+∆L/2)ω/c] h

(
t− L+∆L/2

c

)
(31)

≈ ωγ

[
t− 2L

c

]
− kγ∆L−

[
h0kγL sinc

(
ω
L

c

)]
cos[ω(t− L/c)] (32)

and

ϕy = ωγ

[
t− 2L−∆L

c

]
+ ωγ

L−∆L/2

c
sinc[(L−∆L/2)ω/c] h

(
t− L−∆L/2

c

)
(33)

≈ ωγ

[
t− 2L

c

]
+ kγ∆L+

[
h0kγL sinc

(
ω
L

c

)]
cos[ω(t− L/c)] (34)

Thus, the total electric field is

Etot(t) = E(x)(t) + E(y)(t) =
E0

2

[
−e−iϕx + e−iϕy

]
(35)

= iE0 expωγ

[
−iωγ

(
t− 2L

c

)]
sin [kγ∆L+∆ϕ(t)] (36)

6



where E0 is the amplitude of the field as at the beamsplitter input, and

∆ϕ(t) =

[
h0kγL sinc

(
ω
L

c

)]
cos[ω(t− L/c)]

is the GW-dependent phase. Notice also that the kγ∆L term is associated with the Schnupp
asymmetry.

From eq. (36) we find that the output power is

P = P0 sin
2 [kγ∆L+∆ϕ(t)] =

P0

2
{1− cos [2kγ∆L+ 2∆ϕ(t)]} (37)

and that the change in output power due to a GW signal is

∆P = P0 sin(2kγ∆L)∆ϕ(t) ≤ 2P0 sin(2kγ∆L)h0kγL = P0 sin(2kγ∆L)
4πL

λγ
h0 (38)

Appendix 2: Stokes treatment of reflection and refraction

Note: this text is adapted from E. Hecht, Optics, 4th ed., Addison-Wesley (2002).

Figure 4 shows rays reflected and refracted, and the way the refraction and transmission
coefficients modify amplitudes. Primed coefficients corresponds to incidence from the higher
density medium. The middle panel shows the time-reversed ray configuration. The right panel
shows the superposition of left and middle panel.

(a) (b) (c) 

Figure 4: Figure illustrating the Stokes treatment of reflection and transmission coefficients.

From the superposition diagram we find

E0itt
′ + E0irr = E0i (39)

E0irt+ E0itr
′ = 0 (40)

And therefore

r′ = −r (41)

tt′ = 1− r2 (42)

This treatment holds for near normal refraction, and it can be modified accordingly for non-
normal incidence.
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