Example of Newtonian limit

Edoardo Milotti

October 22, 2022

The Newtonian limit of General Relativity is defined by the conditions

- all motions are slow $(v \ll c)$
- gravitational fields are weak
- gravitational fields are static

From these conditions we can retrieve the usual equation of motion in a gravitational field

$$
\frac{d^{2} x^{i}}{d t^{2}}=-\partial_{i} \Phi
$$

where Φ is the nonrelativistic gravitational potential. To this end, we note first that by the assumption that all motions are slow

$$
\frac{d x^{i}}{d \tau} \ll c \quad \Rightarrow \quad \frac{d x^{i}}{d(c \tau)} \ll 1 \quad \text { and } \quad \frac{d t}{d \tau} \approx 1
$$

then the only non-negligible terms in the geodesic equations are those with the Γ_{00}^{α} Christoffel symbols

$$
\begin{equation*}
\frac{d^{2} x^{\alpha}}{d \tau^{2}}+\Gamma_{\beta \gamma}^{\alpha} \dot{x}^{\beta} \dot{x}^{\gamma}=0 \quad \Rightarrow \quad \frac{d^{2} x^{\alpha}}{d \tau^{2}}+\Gamma_{00}^{\alpha}\left(\frac{c d t}{d \tau}\right)^{2} \approx 0 \tag{1}
\end{equation*}
$$

Using the expression

$$
\begin{equation*}
\Gamma_{\beta \gamma}^{\alpha}=\frac{1}{2} g^{\alpha \nu}\left(\frac{\partial g_{\nu \gamma}}{\partial x^{\beta}}+\frac{\partial g_{\nu \beta}}{\partial x^{\gamma}}-\frac{\partial g_{\beta \gamma}}{\partial x^{\nu}}\right), \tag{2}
\end{equation*}
$$

and the assumption of static field, so that the time derivatives vanish, we find

$$
\begin{equation*}
\Gamma_{00}^{\alpha}=\frac{1}{2} g^{\alpha \nu}\left(-\frac{\partial g_{00}}{\partial x^{\nu}}\right)=-\frac{1}{2} g^{\alpha \nu} \frac{\partial g_{00}}{\partial x^{\nu}}, \tag{3}
\end{equation*}
$$

Finally, from the assumption that fields are weak, we consider the metric tensor to be approximately equal to $\eta_{\mu \nu}$ but for a small perturbation $h_{\mu \nu}$ (such that $\left|h_{\mu \nu}\right| \ll 1$):

$$
\begin{equation*}
g_{\mu \nu} \approx \eta_{\mu \nu}+h_{\mu \nu} . \tag{4}
\end{equation*}
$$

The inverse metric tensor has a similar expression

$$
\begin{equation*}
g^{\mu \nu} \approx \eta^{\mu \nu}+h^{\prime \mu \nu} \tag{5}
\end{equation*}
$$

and by contracting it with the metric tensor we obtain

$$
\begin{equation*}
\delta_{\nu}^{\mu}=g_{\mu \alpha} g^{\alpha \nu} \approx\left(\eta_{\mu \alpha}+h_{\mu \alpha}\right)\left(\eta^{\alpha \nu}+h^{\alpha \nu}\right) \approx \delta_{\nu}^{\mu}+\eta_{\mu \alpha} h^{\alpha \nu}+h_{\mu \alpha} \eta^{\alpha \nu}, \tag{6}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\eta_{\mu \alpha} h^{\prime \alpha \nu}=-h_{\mu \alpha} \eta^{\alpha \nu}, \tag{7}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
h^{\prime \mu \nu}=-\eta^{\mu \alpha} \eta^{\nu \beta} h_{\alpha \beta} \tag{8}
\end{equation*}
$$

Accordingly, from

$$
\begin{equation*}
h^{\mu \nu}=\eta^{\mu \alpha} \eta^{\nu \beta} h_{\alpha \beta}=-h^{\prime \mu \nu} \tag{9}
\end{equation*}
$$

we obtain the expression for the inverse metric tensor

$$
\begin{equation*}
g^{\mu \nu} \approx \eta^{\mu \nu}-h^{\mu \nu} \tag{10}
\end{equation*}
$$

Going back to eq. (3), we find that these definitions imply

$$
\begin{equation*}
\Gamma_{00}^{\alpha} \approx-\frac{1}{2} \eta^{\alpha \nu} \frac{\partial h_{00}}{\partial x^{\nu}} \tag{11}
\end{equation*}
$$

and the geodesic equation

$$
\begin{equation*}
\frac{d^{2} x^{\alpha}}{d \tau^{2}}+\Gamma_{00}^{\alpha}=\frac{d^{2} x^{\alpha}}{d \tau^{2}}-\frac{c^{2}}{2} \eta^{\alpha \nu} \frac{\partial h_{00}}{\partial x^{\nu}} \approx 0 \tag{12}
\end{equation*}
$$

The field is static, therefore

$$
\begin{equation*}
\frac{d^{2} x^{0}}{d \tau^{2}}-\frac{c^{2}}{2} \eta^{0 \nu} \frac{\partial h_{00}}{\partial x^{\nu}}=\frac{d^{2} x^{0}}{d \tau^{2}}-\frac{c^{2}}{2} \frac{\partial h_{00}}{\partial x^{0}} \approx 0 \tag{13}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\frac{d^{2} t}{d \tau^{2}} \approx \frac{c}{2} \frac{\partial h_{00}}{\partial t}=0 \tag{14}
\end{equation*}
$$

so that $\frac{d t}{d \tau}$ is constant.
Moving now to the space coordinates, we find

$$
\begin{equation*}
\frac{d^{2} x^{i}}{d \tau^{2}}-\frac{c^{2}}{2} \eta^{i \nu} \frac{\partial h_{00}}{\partial x^{\nu}}=\frac{d^{2} x^{i}}{d \tau^{2}}+\frac{c^{2}}{2} \frac{\partial h_{00}}{\partial x^{i}} \approx 0 \tag{15}
\end{equation*}
$$

Finally, setting $h_{00}=2 \Phi / c^{2}$ we obtain

$$
\begin{equation*}
\frac{d^{2} x^{i}}{d \tau^{2}} \approx-\frac{\partial \Phi}{\partial x^{i}} \tag{16}
\end{equation*}
$$

which is the usual equation of motion with gravitational potential Φ.

