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Renate Meyer and Nelson Christensen explain how statistics and statisticians 
helped unravel a story 1 billion years in the making
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The detection of gravitational waves was a landmark 
moment for science, and a testament to both 
theoretical physics and experimental physics.1 
These “ripples” in the curvature of spacetime 

were first predicted by Albert Einstein in 1916, but it took the 
technological heft and spectacular performance of the Laser 
Interferometer Gravitational-Wave Observatory (LIGO) to 
confirm their existence. 

Physicists are rightly celebrating their achievement. But, 
behind the scenes, statisticians had a part to play. Bayesian 
parameter estimation methods, specifically Markov chain 
Monte Carlo (MCMC) techniques, had a crucial role in extracting 
the parameters from the gravitational wave signal that could 
tell the story how, 1.3 billion years ago, two black holes (with 
masses estimated to be 29 and 36 times the mass of our sun, 
which we measure as 1 solar mass, M

☉
) spiralled into one 

another. These two objects collided with a relative speed of 0.6 
times the speed of light, and in the process formed a new back 
hole with a mass of 62M

☉
, which radiated away gravitational 

waves with a total energy equivalent to 3M
☉

.  
It was these gravitational waves that were detected by LIGO, 

and its two L-shaped laser-based detectors – one in Hanford, 
Washington, the other in Livingston, Louisiana.2 As the wave 
passed through the detectors, it subtly altered the length of 
the two arms of the detectors, causing the laser beams to 
travel different distances – a difference that could be detected 
and measured. 

LIGO was designed to detect a gravitational-wave strain, 
h, the difference in lengths relative to the total arm length, of 
amplitude h ~ 10–21; a wave of this amplitude would create a 
difference in length between the two arms of order 10–18 m.  
This is the equivalent of a ruler so precise that it can measure 
a  1 000 000 000 000 000-metre-long stick to within 
1 millimetre.  How is it possible to measure such a small 
distance change?  Every photon from the laser acts like a 
metre stick, and through the repeated measurements of all the 
photons it is possible to get an ensemble average and a value 
for that small distance displacement.

A data analysis task
Nowadays, the work of astrophysicists and cosmologists 
is not just about detecting a signal, but using that signal to 
describe the physical processes that occurred in our universe 
billions of years ago. Over the last 20 years, Bayesian 
parameter estimation methods have become the norm in 
helping to explain those processes. With the LIGO project, 
the ultimate goal is to extract a potential signal embedded in 
noise, and to estimate the parameters of the signal waveform 
that characterises the astrophysical event that created the 
gravitational wave. This is no doubt a data analysis task, 
and  parameter estimation has been the focus of a dedicated 
group among the thousand-plus physicists, astronomers, and 
engineers who worked on the project. The combined efforts 
of all members of the parameter estimation group within the 
LIGO Scientific Collaboration and the Virgo Collaboration (LVC) 
made it possible to achieve this goal.

Before we go further, however, it is helpful to clearly 
distinguish between the detection of gravitational waves and 
the subsequent analysis of their measurements. Whereas 
frequentist chi-square test statistics were used to confirm the 
detection of a gravitational-wave signal and to calculate an 
(exceedingly small) false alarm probability of less than 2 × 10–7, 
Bayesian inference played, and is playing, an important role in 
the follow-up analysis.3 The independent measurement of the 
same signal at both LIGO detectors, with a difference in arrival 
time of 7 milliseconds, is important not only to confirm the 
detection with great confidence but also to estimate the sky 
location of the event.

Once a gravitational wave has been detected, it is 
important to estimate the parameters of the signal waveform 
as accurately as possible and thereby home in on the 
astrophysical characteristics of the cosmic event that caused 
it. Parameter estimation made it possible to infer that what 
caused the detected gravitational wave was indeed the 
merger of two black holes. 

In the detection phase, it is possible to ignore certain 
characteristics of the colliding black holes (generally referred 
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to as ‘coalescing binaries’) and take into account only the 
masses (in the range of 1–100M

☉
) of the binary system and 

the aligned spins, effectively discretising the parameter space 
into a grid of parameter combinations and trying all resulting 
250 000 template waveforms in a matched-filter search 
procedure to check whether the observed waveform is close 
to any of the templates.

In the follow-up phase, though, an accurate signal waveform 
model for the gravitational waves is essential. We will 

discuss these waveforms in more detail below. Taking all 17 
parameters that describe a chirp waveform – like the one 
detected – into account, using a similar discretisation, would 
result in an astronomical number of templates, effectively 
rendering an exhaustive search unfeasible. Even if feasible 
with an ubercomputer, this procedure would give no idea of 
the uncertainty of the estimates – and a point estimate is 
useless without an uncertainty range. This is where MCMC 
provides a clever and efficient way of stepping through a high-
dimensional parameter space, delivering parameter estimates 
and quantifying their uncertainty.

Markov chain Monte Carlo
Monte Carlo methods were developed in the 1950s by 
a team of physicists led by Nicholas Metropolis.4 MCMC 
failed to thrive in an era of slow electronic computers but 
had an enormous growth spurt when computer scientists 
discovered its use for digital image restoration in 1985,5 and 
when statisticians in the 1990s realised that MCMC could 
be harnessed for Bayesian posterior computation.6 Since 
then, MCMC has revolutionised applied statistics. The late 
1990s was when our team started to look at parameter 

BELOW Aerial photo of 
the LIGO detector at 
Livingston, Louisiana. 
Credit: Caltech/MIT/
LIGO Laboratory

A brief history of gravitational waves
In 1915 Einstein produced the general theory of relativity, 
showing that gravitation is not really a force, but that 
mass and energy deform the four-dimensional spacetime 
of the universe. Gravitational waves are a consequence 
of general relativity, and in 1916 Einstein predicted 
their existence. 

Electromagnetic waves, or light, can be created when 
electric charge is accelerated. Similarly, gravitational 
waves are produced when mass is accelerated. Once made, 
gravitational waves travel at the speed of light, generating 
a spacetime distortion in the dimensions perpendicular 
to the direction in which they are propagating. However, 
it is very difficult to create a gravitational wave with an 
amplitude sufficient for detection. 

A series of free online lectures about gravity and 
gravitational waves that do not require any major 
background knowledge in physics can be found at 
futurelearn.com/courses/gravity.

Physicists are rightly 
celebrating their achievement 
in detecting gravitational 
waves. But, behind the 
scenes, statisticians had a 
part to play
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estimation for coalescing binaries and suggested a Bayesian 
approach using MCMC for posterior computation.7 This 
was taken up by the LVC, as well as the cosmologists, who 
embraced the Bayesian philosophy.8–10 MCMC quickly became 
the standard approach to estimating gravitational11 and 
cosmological parameters.12 

Before the upgrade to Advanced LIGO in 2010, the original 
LIGO detectors were operating for eight years or so. During 
this time, research efforts in the LVC were focused on the 
detection phase, by developing a robust and sensitive 
detection pipeline based on matched filtering designed 
to keep up with the large amount of data. The detection 
methods were tested through a “blind injection challenge” 
in which a synthetic coalescing binary signal was added 
without the knowledge of the data analysis teams and 
successfully detected. 

However, many studies also had the objective of developing 
parameter estimation techniques for the follow-up analysis 
phase, once a candidate had been detected. To this end, 
starting with very simple waveform models with only five 
parameters13 – namely the masses of the two black holes, the 
coalescence time, the phase of the signal at coalescence, and 
the effective distance to the source – increasingly accurate 
astrophysical waveform approximations have been employed, 
and MCMC methods developed, to take these into account. 

Unpicking the signal
To give an idea of the statistical models and techniques 
involved, let us take a closer look at estimating the parameters 
of the very first gravitational-wave signal ever detected 
by LIGO on 14 September 2015.3 The aim of the parameter 
estimation group of the LVC was to find out what caused the 
signal, where the astronomical event occurred, and to further 
characterise the source in detail. 

The only information from the detection stage that was 
used to infer these parameters  was the signal arrival time. 
Figure 1  (page 24) shows the observed signal at the two LIGO 
detectors, overlaid by the predicted shapes for the waveform. 
These inferred waveforms show what two merging black 
holes should look like, according to the equations of Albert 
Einstein’s general theory of relativity.

According to this theory,14 two orbiting objects slowly spiral 
together because they lose energy from the emission of 
gravitational waves. As the two objects approach one another, 
the frequency and amplitude of the emitted gravitational 
waves increases. If the objects are black holes, they form a 
single perturbed black hole when they finally merge, which 
then emits gravitational waves at a constant frequency and 
exponentially damped amplitude. 

The signal detected by LIGO matched nicely with the 
predictions of general relativity. Bayesian parameter 
estimation methods would then provide the means to know 
more about the black holes that caused these ripples.

Waveforms of two in-spiralling black holes are described 
by intrinsic parameters, the two masses (m

1, m2) and spins 
(magnitude and orientation) of the individual black holes, 

Technical notes: Estimating black hole parameters
Let us denote the vector of unknown waveform parameters by ϑ. The data d(t) 
recorded at each detector is assumed to consist of the compact binary coalescence 
signal, the strain h(t; ϑ) plus additive noise: 

d(t) = h(t; ϑ) + n(t),  t = 1,…,T

Strain represents the fractional amount by which distances are distorted. The 
strain at each detector consists of a linear combination of the two independent 
polarisation amplitudes h+, h× and the antenna response functions  F+, F× that 
depend on the source location in the sky and the polarisation of the waves: 

h(t; ϑ) = F+(t; α, δ, ψ) h+(t; ϑ)  +  F×(t; α, δ, ψ) h×(t; ϑ)

There are a number of distinct waveform models h(t; ϑ) that differ in the post-
Newtonian order of their approximation, their computational complexity, and their 
regime of applicability. Physicists are actively improving these models, none of 
which can describe all possible physical effects for all binary systems. In the case 
of the wave detected on 14 September 2015, a waveform model with 13 parameters 
was eventually used to characterise the coalescing black hole waveform. 

The data d(t) span the period [tc – T + 2, tc + 2], i.e. a time T (= 8 s) that ends 2 
seconds after the trigger.  The time series is usually down-sampled from its original 
sampling frequency (16 384 Hz) to a lower rate (typically 4096 Hz) and low-pass 
filtered to prevent aliasing.

The statistical assumption on the noise time series n(t) is that it is stationary 
and Gaussian. After Fourier-transforming the data, an approximate likelihood – the 
so-called Whittle likelihood18,19 – is used. This has the big advantage that we no 
longer have to deal with dependent data because the discrete Fourier-transformed 
data are asymptotically independent Gaussian with variance equal to the power 
spectral density at the Fourier frequencies. So the (approximate) likelihood can 
be written as the product of Gaussians. The  power spectral density is estimated 
beforehand from a stretch of data not containing the signal, so is effectively 
assumed to be known. Because of independence, the joint likelihood is the product 
of the individual likelihoods of the data at each detector.

Why not address this with the usual frequentist approach by maximising 
the likelihood? Given the large number of data points, an asymptotic Gaussian 
approximation of the maximum likelihood estimator might be justified and the 
Hessian matrix easily computed to yield an approximate covariance matrix. This 
would give an asymptotic confidence interval for each parameter estimate and 
thus describe the variability of the estimator over repeated sampling. What it does 
not do, and neither do more sophisticated frequentist bootstrap techniques, is 
quantify the uncertainty in the parameter estimate for this particular data set. 
Bayesian inference does just that by quantifying the uncertainty of a parameter 
estimate via a probability distribution on the parameter space. Starting with a prior 
distribution of ϑ, this distribution is updated via the likelihood after observing the 
data to the posterior distribution. 

Current research looks at Bayesian non-parametric estimates of the power 
spectral density for locally stationary time series so that estimates of the waveform 
parameters ϑ can be obtained by properly marginalising over the power spectral 
density20–22 rather than assuming it to be known.

The aim of the parameter 
estimation group was to find 
out what caused the signal 
and where the astronomical 
event occurred
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as well as extrinsic parameters comprising the luminosity 
distance, right ascension α and declination δ (which describe 
the sky location), the binary’s orbital inclination between the 
system’s orbital angular momentum and the line of sight and 
its polarisation ψ, the time tc and phase φc of coalescence, and 
the two eccentricity parameters of the system.  Some of these 
are of particular interest, such as the masses of the black 
holes, the distance and sky location; others can be considered 
as “nuisance” parameters. 

The technical details of the parameter estimation process 
can be found in the “Technical notes” box on page 23, but, in 
essence, the first step in the process was to make some prior 
assumptions about the likely parameters of the two black 
holes and to input these into the MCMC algorithms in order to 
produce a configuration of parameter estimates that closely 
approximated the signal detected by LIGO. 

Uniform priors on 10–80M
☉ were chosen for the two 

masses, with the constraint that m2 would be less than m1. The 
prior on the coalescence time tc was uniform of width ±0.1 s, 
centred on the trigger time, and the prior on the polarisation 
angle φc was uniform on [0,2π]. In the absence of any 
additional astrophysical constraints on the source, prior choices 
for the other parameters were non-informative.

Here, the posterior distribution lives in a 13-dimensional 
parameter space. We cannot analytically integrate this 
distribution to obtain the marginal posterior distribution 
of each parameter of interest, such as the final mass. 
But MCMC techniques enable an easy sampling-based 
approach to marginalisation. For that purpose, a suite 
of state-of-the art MCMC methods15 – such as adaptive 
Metropolis–Hastings, simulated annealing, delayed 
rejection, parallel tempering and nested sampling – have 
been implemented in the LALInference software library.16 
Figure 2, for instance, shows the two-dimensional marginal 
posterior distribution of the sky location of the source. 
Similarly, parameter estimates in Table 1 were obtained by 
MCMC marginalisation.  

The Bayesian approach to parameter estimation combined 
with MCMC methods made it possible to estimate the 
parameters of the coalescing black hole merger waveform 
after its detection by LIGO and quantify the inherent 
uncertainties. It provided the means to infer important 
characteristics such as the individual masses of the black holes 
and the final mass, the distance to the Earth and the energy 
radiated in gravitational waves. This analysis assumed that 
general relativity is correct, and the waveform reconstruction 
in Figure 1 under this assumption gives no evidence against its 
validity. But Bayes factors have also been used to compare the 
relative fit of different waveform approximations derived by 
solving Einstein’s equations so that various aspects of general 
relativity could be put to the test.17

This is only the beginning of the story of gravitational waves. 
Soon, the Virgo detector (near Pisa, Italy) will be operating in 
concert with LIGO, and with more than two detectors, located 
in different parts of the world, it will be possible to estimate 
the sky location of future events even more accurately. Then, 

FIGURE 2 The approximate sky location in the southern hemisphere of the source of LIGO’s 
gravitational-wave signals. The coloured lines represent different posterior probability regions for 
where the signal originated: the purple line defines the 90% level; the inner yellow line defines the 
10% level. Credit: LIGO Laboratory/Axel Mellinger

FIGURE 1  
Gravitational-wave 
signals detected by 
the twin LIGO 
observatories at 
Livingston, 
Louisiana, and 
Hanford, 
Washington. 
The observed 
waveforms are 
overlaid by the 
predicted 
waveforms of two 
merging black holes 
according to the 
equations of Albert 
Einstein’s general 
theory of relativity. 
Credit: LIGO 
Laboratory
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in 2019, the Japanese KAGRA detector should come online, 
followed by a third LIGO detector (this one in India) in 2023. 
In addition, the LISA Pathfinder spacecraft (sci.esa.int/lisa-
pathfinder), launched in December 2015, will provide an 
important test of the feasibility of putting a gravitational wave 
detector in space. 

Of course, the analysis of all the data – from LIGO-
Virgo and LISA – will provide ample opportunities for 
statisticians to make significant contributions within the field 
of astrostatistics. As the late John Tukey once said: “The 
best thing about being a statistician is that you get to play in 
everyone’s backyard.” The backyard of the astrophysicist is 
vast and expanding. n
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TABLE 1 Important parameters of the coalescing black hole waveform and their estimates (posterior 
medians) along with 90% credible range.1

Mass of initial black hole no. 1 36 (+5, –4) M
☉

Mass of initial black hole no. 2 29 (+4, –4) M
☉

Mass of final black hole 62 (+4, –4) M
☉

Distance to the event 1.34 (+0.52, –0.59) billion light-years

Energy radiated in gravitational waves 3 (+5, –5) M
☉
c2

The Bayesian approach, 
combined with MCMC 
methods, provided the 
means to infer important 
characteristics of the 
black holes
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