
GW data analysis

Edoardo Milotti

January 12, 2023

In this handout I describe some basic techniques in GW data analysis.

Preliminaries:

• the Fourier transform of a signal x(t) and its inverse are defined by the formulas

x̃(f) =

∫ +∞

−∞
x(t)e−2πiftdt, x(t) =

∫ +∞

−∞
x̃(f)e2πiftdf (1)

• the action of filters in the time domain is described by the convolution

(x ∗ y)(t) =
∫ +∞

−∞
x(t′)y(t− t′)dt′ (2)

• consider the Fourier transform of the convolution of two signals x(t) and y(t) with Fourier
transforms x̃(f) and ỹ(f)∫ +∞

−∞
(x ∗ y)(t)e−2πiftdt =

=

∫ +∞

−∞

[∫ +∞

−∞
x(t′)y(t− t′)dt′

]
e−2πiftdt

=

∫ +∞

−∞
x(t′)e−2πift′dt′

∫ +∞

−∞
y(t− t′)e−2πif(t−t′)dt

=

∫ +∞

−∞
x(t′)e−2πift′dt′

∫ +∞

−∞
y(t′′)e−2πift′′dt′′

= x̃(f)ỹ(f) (3)

(convolution theorem)

• a process is stationary when all its statistics are constant in time, i.e., when its probability
distribution is invariant with respect to time translations. A noise can be weakly stationary
when only some of its statistics are time-invariant, for example only mean and variance.

• a process is ergodic when time averages are equal to ensemble averages.
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• the total square fluctuation of a real stationary signal s(t) is given by∫ +∞

−∞
|s(t)|2dt =

∫ +∞

−∞
dt

∣∣∣∣∫ +∞

−∞
s̃(f)e2πiftdf

∣∣∣∣2 (4)

=

∫ +∞

−∞
df ′

∫ +∞

−∞
df ′′s̃(f ′)s̃∗(f ′′)

∫ +∞

−∞
e2πi(f

′−f ′′)tdt (5)

=

∫ +∞

−∞
df ′

∫ +∞

−∞
df ′′s̃(f ′)s̃∗(f ′′)δ(f ′ − f ′′) (6)

=

∫ +∞

−∞
|s̃(f ′)|2df (7)

(Parseval’s theorem).

• the power spectral density (PSD) of a signal s(t) is usually defined as follows

S(f) = lim
T→∞

1

T

∣∣∣∣∣
∫ +T/2

−T/2

s(t)e−2πiftdt

∣∣∣∣∣
2

, (8)

which is a two-sided spectral density where the frequency runs over negative as well as
positive values. However, for real signals – as in the case of the h(t) signal recorded by
a GW IFO – the PSD is an even function, i.e., S(−f) = S(f), and for this reason it is
customary to define and use the one-sided spectral density

S(f) = lim
T→∞

2

T

∣∣∣∣∣
∫ +T/2

−T/2

s(t)e−2πiftdt

∣∣∣∣∣
2

, (9)

where f ≥ 0.

• the definition is similar for a noise signal n(t), the only difference is an ensemble average

S(f) = lim
T→∞

2

T

〈∣∣∣∣∣
∫ +T/2

−T/2

n(t)e−2πiftdt

∣∣∣∣∣
2〉

, (10)

which is again a one-sided spectral density.

• the autocorrelation function of a zero-mean stationary, ergodic process s(t) is defined by

R(τ) = ⟨s(t)s(t+ τ)⟩ = lim
T→∞

1

T

∫ +T/2

−T/2

s(t)s(t+ τ)dt (11)

• autocorrelation function and PSD are closely related. Consider the PSD

S(f) = lim
T→∞

2

T

∣∣∣∣∣
∫ +T/2

−T/2

s(t)e−2πiftdt

∣∣∣∣∣
2

(12)

= lim
T→∞

2

T

∫ +T/2

−T/2

s(t′)e2πift
′
dt′

∫ +T/2

−T/2

s(t)e−2πiftdt (13)
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Now let t = t′ + τ , so that dt = dτ in the second integral (where t′ behaves as a constant),
then we obtain

S(f) = lim
T→∞

2

T

∫ +T/2

−T/2

s(t′)e2πift
′
dt′

∫ +T/2

−T/2

s(t′ + τ)e−2πift′e−2πifτdτ (14)

=

∫ +∞

−∞
e−2πifτdτ lim

T→∞

2

T

∫ +T/2

−T/2

s(t′)s(t′ + τ)dt′ (15)

=

∫ +∞

−∞
R(τ)e−2πifτdτ (16)

i.e., the PSD is the Fourier transform of the autocorrelation function (this is the Wiener-
Kintchine theorem).

• if the noise is white, stationary and Gaussian, it is completely characterized by its variance
N0 in the time domain. When one takes a two-sided spectral representation, this means
(from Parseval’s theorem) that

S(f) = N0/2 (17)

Gaussian noise

By definition a sampled noise is Gaussian when the samples have a Gaussian distribution. Here
we assume that samples of a Gaussian white noise process are taken with time step ∆t, and
that the variance of each sample is σ2, so that the correlation function is Rjk = ⟨xjxk⟩ = σ2δjk.
Using a discretized version of the Wiener-Kintchine theorem, we find the PSD

Sx(f) ≈ 2
∑

j=1,N

Rjke
2πif(j−k)∆t∆t = 2σ2∆t (18)

The probability density function of each sample xi is

p(xi) =
1√
2πσ2

exp

[
− x2

i

2σ2

]
, (19)

therefore the the joint probability density function of N samples is

p ({xi}) =
1

(2πσ2)N/2
exp

[
−
∑

i=1,N x2
i

2σ2

]
=

1

(2πσ2)N/2
exp

[
−
∑

i=1,N x2
i∆t

2σ2∆t

]
(20)

∼ exp

[
− 1

Sx

∫ +∞

−∞
x2(t)dt

]
(21)

= exp

[
−
∫ +∞

−∞

|x̃(f)|2

Sx
df

]
(22)

Now notice that we can generate non-white noises by proper filtering of a white noise. In the
time domain, the filtering operation is described by a convolution

y(t) =

∫ +∞

−∞
k(t− t′)x(t′)dt′ (23)
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where k(t) is the pulse response function of the filter and its Fourier transform K(f) is the
transfer function of the filter. Then, in the frequency domain, we find

ỹ(f) = K(f)x̃(f) (24)

from the convolution theorem: this implies that

Sy(f) = |K(f)|2Sx(f) (25)

Therefore

p ({xi}) ∼ exp

[
−
∫ +∞

−∞

|x̃(f)|2

Sx
df

]
= exp

[
−
∫ +∞

−∞

|K(f)|2|x̃(f)|2

|K(f)|2Sx
df

]
= exp

[
−
∫ +∞

−∞

|ỹ(f)|2

Sy
df

]
(26)

and we see that the formula holds also for non-white noise.

In addition, we can use the last result for the argument of the exponential as a motivation to
introduce a scalar product in this function space:

(x, y) = 2 Re

∫ +∞

−∞

x̃(f)ỹ∗(f)

S
df, (27)

or

(x, y) = 4 Re

∫ +∞

0

x̃(f)ỹ∗(f)

S
df, (28)

when we use a single-sided spectral density, so that we can write the probability as a function of
such a scalar product

p ({xi}) ∼ exp

[
− (x, x)

2

]
. (29)

Optimal detection statistic and Bayes’ theorem

Recall that for two hypotheses – null hypothesis H0 and alternative hypothesis H1 – Bayes’
theorem writes

P (H0,1|s) =
P (s|H0,1)P (H0,1)

P (s|H0)P (H0) + P (s|H1)P (H1)
(30)

and given the data, we select the hypothesis that maximizes the posterior probability P (H0,1|s),
this is the Maximum A Posteriori (MAP) choice. We can also consider the odds ratio

P (H1|s)
P (H0|s)

=
P (s|H1)P (H1)

P (s|H0)P (H0)
(31)

which reduces to
P (H1|s)
P (H0|s)

=
P (s|H1)

P (s|H0)
(32)

if the prior probabilities of the null and of the alternative hypothesis are equal (in this case
the odds ratio is called the Bayes factor). It is noteworthy that the Bayes factor is called the
likelihood ratio in frequentist statistics, in which context it is shown to be the “most powerful
test of size α” (Neyman-Pearson lemma). Given that the logarithm is a monotonically increasing
function, the argument works also for the log likelihood ratio.
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Matched filters

The detection problem that we face in GW data analysis involves a null hypothesis where the
signal is just noise, s(t) = n(t), and an alternative hypothesis where the signal is given by the
sum of a GW signal plus noise, s(t) = n(t) + h(t). Then, the likelihood ratio is

Λ =
p (s|H1)

p (s|H0)
= exp

{
1

2
[−(s− h, s− h) + (s, s)]

}
= exp [(s, h)− (h, h)/2] . (33)

Since the likelihood ratio depends on data only through the (s, h) product, which is a log likeli-
hood ratio, we conclude that this is the optimal detection statistic, i.e.,

(s, h) = 4 Re

∫ +∞

0

s̃(f)h̃∗(f)

Sn(f)
df (34)

where I used tildes to denote Fourier transforms to avoid confusion with other symbols, and
where Sn(f) is the noise PSD. Eq. (34) defines the matched filter1.

Here we remark that in eq. (34) the expression s̃(f)/
√

Sn(f) is the Fourier transform of the

whitened signal and h̃∗(f)/
√
Sn(f) is the whitened filter transfer function.

Now consider the inverse Fourier transform of the conjugate of a Fourier transform∫ +∞

−∞
x̃∗(f)e2πiftdf =

[∫ +∞

−∞
x̃(f)e2πif(−t)df

]∗
= x(−t), (35)

we find that it represents the time-reversed signal. Therefore, when we consider eq. (34), we see
that it corresponds to a time convolution where the template signal h is time-reversed (see figure
1).

Signal-to-noise ratio (SNR)

The ideal matched filter has a template signal h that is equal to the detected signal s, and
in that case

ρ2opt = (h, h) = 4

∫ +∞

0

|h̃(f)|2

Sn(f)
df (36)

which is the optimal power signal-to-noise ratio; its square root ρ =
√

ρ2 is the amplitude signal-
to-noise ratio.

1This is the Bayesian derivation of the matched filter, which has the advantage of connecting the filter to
important statistical concepts and to the Gaussian distribution, however other derivations also exist.
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Figure 1: Representation of the template signal in the time-domain. (a) A wave train; (b) the
reversed train; (c) a matched-filter impulse response. Figure from G. L. Turin, An Introduction
to Matched Filters, IRE Trans. on Information Theory 6 (1960) 311.
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