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1 Linearized gravity

When dealing with the Newtonian limit of General Relativity we have already met the weak-field
condition, whereby the metric tensor is approximately equal to ηµν but for a small perturbation
hµν (such that |hµν | ≪ 1)

gµν ≈ ηµν + hµν , (1)

and the inverse metric tensor is
gµν ≈ ηµν − hµν . (2)

These definitions imply

Γµ
αβ =

1

2
gµν (∂αgνβ + ∂βgνα − ∂νgαβ) (3)

≈ 1

2
ηµν (∂αhνβ + ∂βhνα − ∂νhαβ) . (4)

then

Rµ
αβγ = ∂βΓ

µ
αγ − ∂γΓ

µ
αβ + Γδ

αγΓ
µ
δβ − Γδ

αβΓ
µ
δγ ≈ ∂βΓ

µ
αγ − ∂γΓ

µ
αβ (5)

≈ 1

2
ηµν [(∂α∂βhνγ + ∂β∂γhνα − ∂β∂νhαγ)− (∂α∂γhνβ + ∂β∂γhνα − ∂ν∂γhαβ)] (6)

=
1

2
ηµν (∂α∂βhνγ − ∂β∂νhαγ − ∂α∂γhνβ + ∂ν∂γhαβ) (7)

Correspondingly, we find a linearized expression for the Ricci tensor

Rαβ = Rµ
αβµ ≈ 1

2
ηµν (∂α∂βhνµ − ∂β∂νhαµ − ∂α∂µhνβ + ∂ν∂µhαβ) (8)

=
1

2

(
∂α∂βh

µ
µ − ∂β∂

µhαµ − ∂α∂
µhµβ + ∂µ∂µhαβ

)
(9)

=
1

2

(
□2hαβ + ∂α∂βh− ∂β∂

µhαµ − ∂α∂
µhµβ

)
(10)

where h = hµ
µ and where

□2 = ∂µ∂µ =
1

c2
∂2

∂t2
−∇2

is the d’Alambertian operator. From this it follows that the Ricci scalar is

R = ηαβRαβ = □2h− ∂µ∂νh
µν , (11)
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and finally we obtain Einstein’s tensor

Gµν = Rµν − 1

2
ηµνR =

1

2

(
□2hµν + ∂µ∂νh− ∂µ∂

αhαν − ∂ν∂
αhµα − ηµν□

2h+ ηµν∂α∂βh
αβ

)
,

(12)
and the Einstein equation for linearized gravity

Gµν =
1

2

(
□2hµν + ∂µ∂νh− ∂µ∂

αhαν − ∂ν∂
αhµα − ηµν□

2h+ ηµν∂α∂βh
αβ

)
= −8πG

c4
Tµν (13)

Eq. (13) becomes slightly simpler by redefining the perturbation variables:

h̄µν = hµν − 1

2
ηµνh

(trace-reversed perturbation variables), such that

h̄ = h̄µ
µ = h− 1

2
ηµνηµνh = h− 1

2
δµµh = h− 2h = −h

and therefore

hµν = h̄µν − 1

2
ηµν h̄.

Using the trace-reversed perturbation variables in eq (13), we find

□2h̄µν − 1

2
ηµν□

2h̄− ∂µ∂ν h̄− ∂µ∂
αh̄αν +

1

2
∂µ∂ν h̄

− ∂ν∂
αh̄µα +

1

2
∂ν∂µh̄+ ηµν□

2h̄+ ηµν∂α∂βh̄
αβ − 1

2
ηµν□

2h̄ = −16πG

c4
Tµν , (14)

i.e.,

□2h̄µν − ∂µ∂
αh̄αν − ∂ν∂

αh̄µα + ηµν∂α∂βh̄
αβ = −16πG

c4
Tµν , (15)

which is the Einstein equation for linearized gravity with trace-reversed perturbation variables.
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2 Gauge transformations

We have already met the ambiguities associated with the freedom of choice of the coordinate
system, and we easily guess that fluctuations of the metric tensor can be due to

1. perturbations of space-time

2. perturbations of the coordinate system

3. both 1. and 2.

We can understand the effect of coordinate perturbations by making small gauge transformation.
Consider two coordinate systems which differ by a small translation ξµ:

x′µ = xµ + ξµ; xµ = x′µ − ξµ (|ξµ| ≪ 1)

so that the coordinate transformation matrices are

∂x′µ

∂xν
= δµν + ∂νξ

µ (16)

∂xµ

∂x′ν = δµν − ∂′
νξ

µ = δµν − ∂xα

∂x′ν
∂ξµ

∂xα
= δµν − (δαν − ∂′

νξ
α)

∂ξµ

∂xα
≈ δµν − ∂νξ

µ. (17)

In particular, the metric tensor transforms as follows:

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ν gαβ = (δαµ − ∂µξ
α)(δβν − ∂νξ

β)gαβ (18)

≈ gµν − ∂νξ
β gµβ − ∂µξ

α gαν (19)

= gµν − ∂νξµ − ∂µξν (20)

For this small transformation, we have, again,

gµν ≈ nµν + hµν ,

therefore, when expressed in terms of perturbation variables, the transformation eq. (20) becomes

h′
µν = hµν − ∂νξµ − ∂µξν (21)

We find the transformation of the trace-reversed perturbation variables evaluating first the
transformed trace variable

h′ = ηµνh′
µν = ηµνhµν − ηµν∂νξµ − ηµν∂µξν = h− 2∂µξ

µ, (22)

then

h̄′
µν = h′

µν − 1

2
ηµνh

′ = hµν − ∂νξµ − ∂µξν − 1

2
ηµν (h− 2∂αξ

α) (23)

= h̄µν − ∂νξµ − ∂µξν + ηµν∂αξ
α (24)
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As they should, these coordinate transformations do not affect (at this order) the Riemann
tensor:

R′µ
αβγ =

1

2
ηµν

(
∂α∂βh

′
νγ − ∂β∂νh

′
αγ − ∂α∂γh

′
νβ + ∂ν∂γh

′
αβ

)
(25)

=
1

2
ηµν [∂α∂β(hνγ − ∂νξγ − ∂γξν)− ∂β∂ν(hαγ − ∂αξγ − ∂γξα)

−∂α∂γ(hνβ − ∂νξβ − ∂βξν) + ∂ν∂γ(hαβ − ∂αξβ − ∂βξα)] (26)

=
1

2
ηµν (∂α∂βhνγ − ∂β∂νhαγ − ∂α∂γhνβ + ∂ν∂γhαβ) = Rµ

αβγ (27)

Going back to eq. (15)

□2h̄µν − ∂µ∂
αh̄αν − ∂ν∂

αh̄µα + ηµν∂α∂βh̄
αβ = −16πG

c4
Tµν ,

we see that we can fix the coordinate system in a particularly advantageous way if we set

∂ν h̄
µν = 0 (28)

(the Lorenz gauge), then it is straightforward to see that the equation reduces to the system

□2h̄µν = −16πG

c4
Tµν (29)

∂ν h̄
µν = 0 (30)

2.1 Existence of the Lorenz gauge

Is there a coordinate system that actually satisfies the Lorenz condition? If it exists, then there
must be a coordinate transformation

h̄′
µν = h̄µν − ∂νξµ − ∂µξν + ηµν∂αξ

α (31)

such that ∂ν h̄
′µν = 0. Indeed, using eq. (31), we find

0 = ∂ν h̄′
µν = ∂ν h̄µν − ∂ν∂νξµ − ∂ν∂µξν + ηµν∂

ν∂αξ
α (32)

= ∂ν h̄µν −□2ξµ − ∂µ∂
νξν + ∂µ∂

νξν (33)

= ∂ν h̄µν −□2ξµ (34)

We end up with the equation
∂ν h̄µν = □2ξµ (35)

which is a wave equation with a source term. It turns out that – under very general assumptions
– it can always be solved as a by functions of the form g(x) + g0(x), where g is a particular
solution which takes into account the source term on the r.h.s. of the equation, and g0 is the
general solution of the associated homogeneous equation

∂ν h̄µν = 0, (36)

therefore we conclude that we can always find a suitable transformation that takes us to a
coordinate system where the Lorenz gauge holds.
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