The stress-energy tensor of gravitational waves and the energy flux

Edoardo Milotti

January 12, 2023

We already know that in linearized gravity, and taking the Lorentz gauge, the Einstein equation is

$$
\begin{equation*}
2 G_{\mu \nu}^{(1)}=\square^{2} \bar{h}_{\mu \nu}=-\frac{16 \pi G}{c^{4}} T_{\mu \nu} \tag{1}
\end{equation*}
$$

where $G_{\mu \nu}^{(1)}$ denotes the first-order term of the Einstein tensor and $T_{\mu \nu}$ is the non-gravitational stress-energy tensor. Considering the second-order term as well, we find

$$
\begin{equation*}
2 G_{\mu \nu}^{(1)}+2 G_{\mu \nu}^{(2)}=-\frac{16 \pi G}{c^{4}} T_{\mu \nu} \tag{2}
\end{equation*}
$$

and we can consider the second-order term as something new that takes into account the selfinteraction of the gravitational field with itself, and in particular we can write

$$
\begin{equation*}
\square^{2} \bar{h}_{\mu \nu}=-\frac{16 \pi G}{c^{4}}\left(T_{\mu \nu}+T_{\mu \nu}^{\mathrm{GW}}\right) \tag{3}
\end{equation*}
$$

where

$$
T_{\mu \nu}^{\mathrm{GW}}=\frac{c^{4}}{8 \pi G} G_{\mu \nu}^{(2)}
$$

is the gravitational contribution to the stress-energy tensor.
Recalling that in the Lorentz gauge $\partial_{\nu} \bar{h}^{\mu \nu}$, we obtain

$$
\begin{equation*}
\partial^{\nu}\left(T_{\mu \nu}+T_{\mu \nu}^{\mathrm{GW}}\right)=0 \tag{4}
\end{equation*}
$$

so that overall, the total energy is conserved.
Actually, energy conservation holds only in flat space, thus the previous energy-conservation formula only holds when averaged over several GW wavelenghts, and the proper definition of the gravitational stress-energy tensor is

$$
\begin{equation*}
T_{\mu \nu}^{\mathrm{GW}}=\frac{c^{4}}{8 \pi G}\left\langle G_{\mu \nu}^{(2)}\right\rangle \tag{5}
\end{equation*}
$$

where the average is taken over several GW wavelengths, in the weak field limit.
In a dedicated handout (The TT metric $G W$ worksheet) we find that the energy density ($t t$ component of the stress-energy tensor) can be written in the form

$$
\begin{equation*}
T_{t t}^{\mathrm{GW}}=\frac{c^{4}}{8 \pi G}\left\langle G_{t t}^{(2)}\right\rangle=\frac{c^{2}}{16 \pi G}\left\langle\dot{h}_{+} \dot{h}_{+}\right\rangle, \tag{6}
\end{equation*}
$$

and it is quite obvious that the same result must hold for the rotated polarization, so that, overall, the energy density is

$$
\begin{equation*}
T_{t t}^{\mathrm{GW}}=\frac{c^{2}}{16 \pi G}\left\langle\dot{h}_{+} \dot{h}_{+}+\dot{h}_{\times} \dot{h}_{\times}\right\rangle=\frac{c^{2}}{32 \pi G}\left\langle\dot{h}_{j k} \dot{h}^{j k}\right\rangle \tag{7}
\end{equation*}
$$

where the rightmost form of the equation is written in such a way that it holds for any spatial direction. A simple argument shows that the energy flux of the gravitational wave is equal to

$$
\begin{equation*}
\text { energy flux }=c T_{t t}^{\mathrm{GW}}=\frac{c^{3}}{32 \pi G}\left\langle\dot{h}_{j k} \dot{h}^{j k}\right\rangle \tag{8}
\end{equation*}
$$

Now, recall the equation that we obtained in the GW heuristics handout

$$
\begin{equation*}
\bar{h}_{i j} \approx-\frac{2 G}{c^{4} r} \frac{d^{2} I_{i j}^{T T}}{d t^{2}} \tag{9}
\end{equation*}
$$

then

$$
\begin{equation*}
\text { energy flux }=\frac{c^{3}}{32 \pi G} \frac{4 G^{2}}{c^{8} r^{2}}\left\langle\dddot{\mathscr{I}}_{i j}^{T T} \dddot{I}_{T T}^{i j}\right\rangle=\frac{G}{8 \pi c^{5}} \frac{\left\langle\dddot{I}_{i j}^{T T} \dddot{\Psi}_{T T}^{i j}\right\rangle}{r^{2}} \tag{10}
\end{equation*}
$$

where the $T T$ label reminds us that this result has been obtained in the TT gauge.

