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We already know that in linearized gravity, and taking the Lorentz gauge, the Einstein
equation is

2G(1)
µν = □2h̄µν = −16πG

c4
Tµν (1)

where G
(1)
µν denotes the first-order term of the Einstein tensor and Tµν is the non-gravitational

stress-energy tensor. Considering the second-order term as well, we find

2G(1)
µν + 2G(2)

µν = −16πG

c4
Tµν (2)

and we can consider the second-order term as something new that takes into account the self-
interaction of the gravitational field with itself, and in particular we can write

□2h̄µν = −16πG

c4
(
Tµν + TGW

µν

)
(3)

where

TGW
µν =

c4

8πG
G(2)

µν

is the gravitational contribution to the stress-energy tensor.

Recalling that in the Lorentz gauge ∂ν h̄
µν , we obtain

∂ν
(
Tµν + TGW

µν

)
= 0 (4)

so that overall, the total energy is conserved.

Actually, energy conservation holds only in flat space, thus the previous energy-conservation
formula only holds when averaged over several GW wavelenghts, and the proper definition of the
gravitational stress-energy tensor is

TGW
µν =

c4

8πG

〈
G(2)

µν

〉
(5)

where the average is taken over several GW wavelengths, in the weak field limit.

In a dedicated handout (The TT metric GW worksheet) we find that the energy density (tt
component of the stress-energy tensor) can be written in the form

TGW
tt =

c4

8πG

〈
G

(2)
tt

〉
=

c2

16πG

〈
ḣ+ḣ+

〉
, (6)
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and it is quite obvious that the same result must hold for the rotated polarization, so that,
overall, the energy density is

TGW
tt =

c2

16πG

〈
ḣ+ḣ+ + ḣ×ḣ×

〉
=

c2

32πG

〈
ḣjkḣ

jk
〉
, (7)

where the rightmost form of the equation is written in such a way that it holds for any spatial
direction. A simple argument shows that the energy flux of the gravitational wave is equal to

energy flux = c TGW
tt =

c3

32πG

〈
ḣjkḣ

jk
〉
. (8)

Now, recall the equation that we obtained in the GW heuristics handout

h̄ij ≈ − 2G

c4r

d2ITT
ij

dt2
, (9)

then

energy flux =
c3

32πG

4G2

c8r2

〈 ...
I

TT
ij

...
I

ij
TT

〉
=

G

8πc5

〈 ...
I

TT
ij

...
I

ij
TT

〉
r2

(10)

where the TT label reminds us that this result has been obtained in the TT gauge.
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