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Earlier in the course, we found that the generic amplitude of the GW strain in the T'T gauge,
with propagation in the z direction is
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for a gravitational wave with strain
WY = AP cos(wt — kz) (2)

Clearly, taking a generic matrix with propagation in a generic direction, we still have vanishing
time components, and the matrix is
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Now we have to project it in a plane perpendicular to the direction of propagation and make it
traceless. We start with the projection operator of a vector in the direction perpendicular to a
unit vector n: . ‘ '

Pl =6 —n/ng. (4)

A true projector operator should be such that P%P,;" = P,z: indeed, we find

Pl P™ = (67— nIng, ) (60 —n™ny) = (5‘,1 —ning —ning + (npn™)ning, = (52 —ning, = PIZ (5)
In the case of n = z it is easy to see that
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Since a matrix like A% transforms like the tensor product of two contravariant vectors, the
projected (transverse) matrix is

_ ‘ 100 AL A2 A8 100 AL A0
[AF] = [PLA™PF = 0 1 0 A2t 422 4% 010 A2t A2
0 00 A3t 432 438 0 00 0 0 O

(7)



as we easily guess.

We make the matrix traceless by subtracting the trace equally from each diagonal element:
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Formally, the trace of the transverse matrix is

NapAY = 1y PE PPA™ = Py, PP A™ = P, A™,

9)

this means that, in general, the transverse-traceless matrix is given by the following expression

We use these operators and the equation for the energy flux that we discussed earlier
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to find the flux in a generic direction. Thus,
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Now, notice that
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therefore the last term in expression is
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The first term in expression can be expanded as follows:
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Finally, combining all the pieces, we find
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and the equation for the energy flux in direction n is
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energy flux =

Now we can integrate this energy flux (irradiance) of the gravitational wave over all direction
to find the total emitted power. To this end we need an explicit expression for the unit vector
n. We take the z-axis as a reference and write

n = (sin 0 cos ¢, sin O sin ¢, cos )

so that, by integrating over the surface of a sphere of radius r, the total emitted power is

Paw = /27r d¢/+1d0059 —< iy > (23)
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The last formula splits into separate integrals; the first integral is easy to evaluate

27 +1
/ dgf)/ dcosf = 4. (25)
0 ~1

The second integral is
2 +1
/ d(b/ dcos® n*n™ (26)
0 -1
and we can distinguish different cases:

1. k # m: in practice, because of the symmetry with respect to index exchanges, this corre-
sponds to three products, n”n¥, n”n*, and n¥n?, with the corresponding integrals evaluated
below

(a)

27 “+1
/ do / dcos @ sin? 6 cos ¢ sin ¢
0 —1

1 +1 27
B / (1 —cos®6)d cos@/ sin2¢ dp =0 (27)
~1 0

27 +1
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2m +1 27 +1
/ d(b/ dcosf n"n® = / d¢/ dcos@ sinfcosfhcosp =0 (28)
0 -1 0 -1

2m +1 27 +1
/ dgb/ dcosf n¥n® = / dgb/ dcosf sinfcosfsing =0 (29)
0 -1 0 -1

2. k = m: this corresponds to three products, n"n®, n¥yn?, and n*n®, however we expect
them to be equal because of the spherical symmetry of the problem (arbitrary choice of
the reference axes for vector n), and we only need to evaluate the simplest one

27 —+1 27 “+1 A
/ d(b/ dcosf n*n® = / d(b/ dcosf cos® = — (30)
0 -1 0 -1 3
Finally, we can summarize these result with the single formula
27 +1 o 4 .
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The third integral is
27 +1
/ d(b/ dcos O nFn™ntn" (32)
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In the previous calculation we have seen that only the terms with an even number of equal
factors survive: the reason is that those with an odd number are also odd functions with respect
to even integration intervals. For the same reason, here only the terms which contain two pairs
of equal indices, or where all indices are equal, survive. Therefore we must consider the terms
n*n®n¥nY, n*n*n*n?, and nYn¥n*n* (pairs), and the terms n*n*n®n®, n¥n¥n¥n¥, and n*n*n*n?:

1. n*n"n¥nY (and similar terms): the naming of the pairs does not really matter, because of
the arbitrariness in choosing the reference frame, therefore we only need to evaluate one
integral, with integrand n*n*n*n?
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/ dd)/ dcos @ n*n"n*n* :/ dqb/ dcos @ sin? 0 cos? 0 cos? ¢ (33)
0 -1 0 -1

27 +1 471_
= / cos® ¢ do de(z? —2%) = — (34)
0 -1 15

2. n*n*n*n® (and similar terms): in this case all the three integrals must be the same, we

only take the integrand n*n*n*n?

27 +1 27 +1 A
/ dqb/ dcosf n*n*n*n® :/ dqb/ dcosf cos* 0 = 3 (35)
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We can take into account all the index combinations that produce nonvanishing values of the
integral with the sum
4m km, fn kL, _mn kn, mé
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and indeed, each element of the sum selects just one of the combinations that include unequal
pairs, contributing with 47/15, while in the case of all indices equal, all terms contribute, and
therefore the corresponding value is 47/5 as it should be.

Thus, the GW power emitted by the source is
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(recalling that £ ™" is traceless).



