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We found earlier that when we define the spatial quadrupole tensor of the mass distribution

Qij =

∫
ρxixj d

3x (1)

then the amplitude of the gravitational waves emitted by a mass with density ρ(t,x), is given by
the quadrupole formula

h̄ij ≈ − 2G

c4r

d2Qij

dt2
(2)

where r is the distance to the source and t is the retarded time.

We also found that there is a very useful specialization of the Lorentz gauge, the TT gauge, a
coordinate system that is comoving with the wave itself. In the TT gauge, free particles remain at
constant coordinate locations, although their proper separations change. We find the amplitude
of the GW in the TT gauge by projecting the quadrupole tensor in the plane perpendicular to
the direction of the wave, and by removing the trace of the projected tensor.

It is easy to see that the quadrupole tensor of a spherical mass distribution is
proportional to δij, so that it becomes the null tensor when we remove the trace.
This means that spherically symmetric motions do not produce any gravitational
radiation.

Dimensionally, the components of the second derivative of the quadrupole tensor in eq. (2)
have units [mass][speed]2, therefore we expect the components of the strain to be bounded

h ≲
2G

c4r
(Mv2)nonsph (3)

where (Mv2)nonsph is twice the kinetic energy for the nonspherical part of the mass distribution.
The bound can be written slightly differently using the gravitational potential

h <
2ϕext

c4
(v2)nonsph (4)

with the assumption that the entire mass is involved in the nonspherical motion, so that (Mv2)nonsph =
M(v2)nonsph. Now, recall the virial theorem (see the Appendix for a proof) which states that in
a gravitating system, M⟨v2⟩ = ⟨ϕint⟩, where the average gravitational potential ⟨ϕint⟩ is that of
the internal interactions in the gravitating system that emits gravitational waves. Then, if ϕint

is the maximum potential internal to the system

v2nonsph < ϕint (5)
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and finally

h <
2ϕextϕint

c4
(6)

a bound which is attained if the system has no spherical symmetry, like a binary star system.

Finally, we note that nonspherical part of the quadrupole tensor is given by the reduced
quadrupole tensor

Iij =

∫
source

ρ

(
xixj − 1

3
ηijr2

)
d3x, (7)

so that equation (2) becomes

h̄ij ≈ − 2G

c4r

d2Iij
dt2

(8)
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Appendix: the virial theorem

Consider the quantity λ = piqi (assuming as usual the Einstein summation convention), then,
from Hamilton’s equations

q̇i =
∂H

∂pi
; ṗi = −∂H

∂qi

we find
dλ

dt
= pi

dqi
dt

+ qi
dpi
dt

= pi
∂H

∂pi
− qi

∂H

∂qi
. (9)

By integrating (9), we obtain

λ(τ)− λ(0)

τ
=

1

τ

∫ τ

0

(
pi
∂H

∂pi
− qi

∂H

∂qi

)
dt. (10)

In a periodic system the l.h.s. of (10) vanishes over a period, and it vanishes anyway for bounded
λ as τ → ∞. In both cases we have

1

τ

∫ τ

0

pi
∂H

∂pi
dt =

1

τ

∫ τ

0

qi
∂H

∂qi
dt, (11)

which writes as follow when we introduce the time average ⟨. . . ⟩:〈
pi
∂H

∂pi

〉
=

〈
qi
∂H

∂qi

〉
. (12)

Next, we introduce the virial function

V = −qi
∂H

∂qi
= qiṗi

and eq. (12) becomes

⟨V⟩ = −
〈
pi
∂H

∂pi

〉
(13)

The virial function was introduced by Clausius in the context of the (many-particle) theory
of gases, but here we use it for a single particle moving in a central potential ϕ(r), so that

⟨V⟩ = ⟨r · ṗ⟩ = −⟨p · ṙ⟩ (14)

and recalling that T = (p · ṙ)/2 is the kinetic energy is, and that the force is derived from the
central potential ṗ = −∇ϕ, we obtain

2⟨T ⟩ = ⟨r · ∇ϕ⟩. (15)

Assuming a central potential ϕ(r) = K/rn, we find

∇ϕ = − Kn

rn+2
r = −n

ϕ

r
r̂ (16)

and finally
2⟨T ⟩ = −n⟨ϕ⟩. (17)

By extending the average to include also an average over many particles, this result extends
to a system of particles.
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