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Here we reconsider the wave equation with source:

□2h̄µν = −16πG

c4
Tµν . (1)

∂ν h̄
µν = 0 (2)

Formally, eq. (1) is just like the equations for the individual electromagnetic vector potential
components Aµ = (ϕ/c,A) in the Lorentz gauge, in particular for the 0 component (the electric
potential) ϕ = cA0 the equation is:

□2ϕ =
ρ

ε0
(3)

∂µA
µ = 0 (4)

The solution of eq. (3) in vacuum, based on retarded potentials, is well-known

ϕ(ct,x) =

∫
ρ(ct− |x− x′|,x′)

4πϵ0|x− x′|
d3x′, (5)

where r0 is the position of a small volume of the source, r is the position where the field is
determined, and r = |r− r0| is their distance. Since, formally, eq. (1) can be obtained from eq.
(3) with the substitution 1/ε0 → −16πG/c4, we see that the solution of eq. (1) is

h̄µν(ct,x) = −4G

c4

∫
Tµν(ct− |x− x′|,x′)

|x− x′|
d3x′. (6)

Under the following conditions:

• source size ≪ wavelength λ of the wave ≪ distance r to the source;

• |h̄µν | ≪ 1;

• source is slow (all its parts move with speed ≪ c);

the solution (6) approximates to

h̄µν(ct,x) ≈ − 4G

c4r

∫
Tµν(ct− r,x′)d3x′. (7)

Now notice that applying the Lorentz condition to both sides of eq. (1), we find

□2(∂ν h̄
µν) = −16πG

c4
∂νT

µν = 0, (8)
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i.e.,
∂νT

µν = 0 (9)

where the time part is
∂νT

0ν = ∂0T
00 + ∂kT

0k = 0, (10)

and the space part is
∂νT

iν = ∂0T
i0 + ∂kT

ik = 0; (11)

we use these equations to prove an identity that helps evaluating the integral (7).

We start with∫
∂k(T

ikxj) d3x =

∫ [
∂kT

ikxj + T ikδjk

]
d3x =

∫ [
−∂0T

i0xj + T ij
]
d3x (12)

where the integral on the l.h.s. is a divergence, and thanks to Gauss’ theorem it is equivalent to
a surface integral on the boundary of the mass distribution; however, at the boundary, T ik drops
to zero, and the whole integral evaluates to zero. Therefore, using this result and the small-speed
approximation, ∫

T ij d3x =

∫
∂0T

i0xj d3x ≈ 1

c

d

dt

∫
T i0xj d3x (13)

and exchanging indexes and summing, we find∫
T ij d3x ≈ 1

2c

d

dt

∫ (
T i0xj + T j0xi

)
d3x. (14)

Next, we remark that∫
∂k

(
T 0kxixj

)
d3x =

∫ (
∂kT

0kxixj + T 0kxiδjk + T 0kxjδik

)
d3x

=

∫
∂kT

0kxixj d3x+

∫ (
T 0jxi + T 0ixj

)
d3x, (15)

where the l.h.s. volume integral has an integrand which is a divergence and can be transformed
into a surface integral that vanishes as above. Therefore,∫ (

T 0jxi + T 0ixj
)
d3x = −

∫
∂kT

0kxixjdV =

∫
∂0T

00xixj d3x, (16)

and finally, ∫
T ij d3x ≈ 1

2c2
d2

dt2

∫
T 00xixj d3x. (17)

We can use this result and the slow-motion assumption T 00 ≈ ρc2, where ρ is the mass
density, to obtain

h̄ij(ct, r) ≈ − 4G

c4r

∫
T ij(ct− r, r) d3x = − 4G

c4r

1

2c2
d2

dt2

[∫
T 00xixj d3x

]
retarded

= − 2G

c4r

d2

dt2

[∫
ρxixj d3x

]
retarded

, (18)

2



where the integrals are evaluated at the retarded time. The integral

Qij =

∫
ρxixj d3x

is the quadrupole tensor of the mass distribution, so that the solution can also be written in the
form

h̄ij(ct,x) ≈ − 2G

c4r
Q̈ij (t− r/c) (19)

GWs radiated by a rotating dumbbell

As an application of eq. (18), consider a dumbbell, with two masses M at the end of a massless
rod of length 2R, as illustrated in figure 1. The dumbbell rotates in the (x1, x2) plane with
constant angular speed ω about its midpoint.

Figure 1: Example of a “dumbbell”. In this case the stars in a binary system orbit one around
the other in a circle of radius R (figure from S. M. Carroll, Spacetime Geometry, an Introduction
to General Relativity Pearson, 2013).

Setting the origin of the coordinate system at the midpoint of the rod, the positions of the
masses are

xi = ±(R cosωt,R sinωt, 0)

and we find

[h̄ij(ct, r)] = −4GMR2

c4r

d2

dt2

 cos2 ωt cosωt sinωt 0
cosωt sinωt sin2 ωt 0

0 0 0


retarded

(20)

=
8GMR2ω2

c4r

 cos 2ωt sin 2ωt 0
sin 2ωt − cos 2ωt 0

0 0 0


retarded

(21)

=
8GMR2ω2

c4r

 cos 2ω(t− r/c) sin 2ω(t− r/c) 0
sin 2ω(t− r/c) − cos 2ω(t− r/c) 0

0 0 0

 . (22)
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This solution represents a gravitational wave with frequency 2ω. Both polarization components
are equally represented and they are 90◦ out of phase, so that this is a circularly polarized
gravitational wave.

It is easy to see that in the case of unequal masses M1, M2, and radii R1, R2, the previous
result becomes

[h̄ij(ct, r)] =
4G(M1R

2
1 +M2R

2
2)ω

2

c4r

 cos 2ω(t− r/c) sin 2ω(t− r/c) 0
sin 2ω(t− r/c) − cos 2ω(t− r/c) 0

0 0 0

 . (23)

We can use these results to find the order of magnitude of the amplitude of waves emitted
by a laboratory-size apparatus. We assume here M = 1 kg, R = 1 m, ω = 1 s−1. Moreover, to
satisfy the far-field approximation, r ≫ c/ω, then the amplitude of the gravitational waves is

h ≈ 8GMR2ω2

c4r
≪ 8GMR2ω3

c5
∼ 10−52,

which is totally undetectable with current technologies.

Further developments: GWs radiated by a rotating dumbbell

In the case of a binary star system with a large separation between stars (which the dumbbell
with vanishing-mass rod approximates) and circular orbits, we can use the Keplerian formulas
to obtain the frequency ω. With masses m1 and m2, with orbital radii r1 and r2, in the CM
system the total momentum vanishes and we find

m1r1ω = m2r2ω (24)

i.e.,
m1r1 = m2r2 (25)

Moreover, the masses experience a centrifugal acceleration that must be balanced by the gravi-
tational force, so that

m1r1ω
2 = m2r2ω

2 =
Gm1m2

(r1 + r2)2
(26)

The latter formula can be rearranged to obtain

r1ω
2 =

Gm2

(r1 + r2)2
; r2ω

2 =
Gm1

(r1 + r2)2
(27)

and therefore

ω2 =
G(m1 +m2)

(r1 + r2)3
(28)

(a form of Kepler’s third law). We shall develop these results further when discussing the
radiation from compact binary systems.

4


