Generation of gravitational waves

Edoardo Milotti

January 12, 2023

Here we reconsider the wave equation with source:

$$
\begin{align*}
\square^{2} \bar{h}^{\mu \nu} & =-\frac{16 \pi G}{c^{4}} T^{\mu \nu} \tag{1}\\
\partial_{\nu} \bar{h}^{\mu \nu} & =0 \tag{2}
\end{align*}
$$

Formally, eq. (11) is just like the equations for the individual electromagnetic vector potential components $A^{\mu}=(\phi / c, \mathbf{A})$ in the Lorentz gauge, in particular for the 0 component (the electric potential) $\phi=c A^{0}$ the equation is:

$$
\begin{align*}
& \square^{2} \phi=\frac{\rho}{\varepsilon_{0}} \tag{3}\\
& \partial_{\mu} A^{\mu}=0 \tag{4}
\end{align*}
$$

The solution of eq. (3) in vacuum, based on retarded potentials, is well-known

$$
\begin{equation*}
\phi(c t, \mathbf{x})=\int \frac{\rho\left(c t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right|, \mathbf{x}^{\prime}\right)}{4 \pi \epsilon_{0}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} \mathbf{x}^{\prime} \tag{5}
\end{equation*}
$$

where \mathbf{r}_{0} is the position of a small volume of the source, \mathbf{r} is the position where the field is determined, and $r=\left|\mathbf{r}-\mathbf{r}_{0}\right|$ is their distance. Since, formally, eq. (1) can be obtained from eq. (3) with the substitution $1 / \varepsilon_{0} \rightarrow-16 \pi G / c^{4}$, we see that the solution of eq. (1) is

$$
\begin{equation*}
\bar{h}^{\mu \nu}(c t, \mathbf{x})=-\frac{4 G}{c^{4}} \int \frac{T^{\mu \nu}\left(c t-\left|\mathbf{x}-\mathbf{x}^{\prime}\right|, \mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} \mathbf{x}^{\prime} \tag{6}
\end{equation*}
$$

Under the following conditions:

- source size \ll wavelength λ of the wave \ll distance r to the source;
- $\left|\bar{h}^{\mu \nu}\right| \ll 1$;
- source is slow (all its parts move with speed $\ll c$);
the solution (6) approximates to

$$
\begin{equation*}
\bar{h}^{\mu \nu}(c t, \mathbf{x}) \approx-\frac{4 G}{c^{4} r} \int T^{\mu \nu}\left(c t-r, \mathbf{x}^{\prime}\right) d^{3} \mathbf{x}^{\prime} \tag{7}
\end{equation*}
$$

Now notice that applying the Lorentz condition to both sides of eq. (1), we find

$$
\begin{equation*}
\square^{2}\left(\partial_{\nu} \bar{h}^{\mu \nu}\right)=-\frac{16 \pi G}{c^{4}} \partial_{\nu} T^{\mu \nu}=0 \tag{8}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\partial_{\nu} T^{\mu \nu}=0 \tag{9}
\end{equation*}
$$

where the time part is

$$
\begin{equation*}
\partial_{\nu} T^{0 \nu}=\partial_{0} T^{00}+\partial_{k} T^{0 k}=0, \tag{10}
\end{equation*}
$$

and the space part is

$$
\begin{equation*}
\partial_{\nu} T^{i \nu}=\partial_{0} T^{i 0}+\partial_{k} T^{i k}=0 ; \tag{11}
\end{equation*}
$$

we use these equations to prove an identity that helps evaluating the integral (7).
We start with

$$
\begin{equation*}
\int \partial_{k}\left(T^{i k} x^{j}\right) d^{3} \mathbf{x}=\int\left[\partial_{k} T^{i k} x^{j}+T^{i k} \delta_{k}^{j}\right] d^{3} \mathbf{x}=\int\left[-\partial_{0} T^{i 0} x^{j}+T^{i j}\right] d^{3} \mathbf{x} \tag{12}
\end{equation*}
$$

where the integral on the l.h.s. is a divergence, and thanks to Gauss' theorem it is equivalent to a surface integral on the boundary of the mass distribution; however, at the boundary, $T^{i k}$ drops to zero, and the whole integral evaluates to zero. Therefore, using this result and the small-speed approximation,

$$
\begin{equation*}
\int T^{i j} d^{3} \mathbf{x}=\int \partial_{0} T^{i 0} x^{j} d^{3} \mathbf{x} \approx \frac{1}{c} \frac{d}{d t} \int T^{i 0} x^{j} d^{3} \mathbf{x} \tag{13}
\end{equation*}
$$

and exchanging indexes and summing, we find

$$
\begin{equation*}
\int T^{i j} d^{3} \mathbf{x} \approx \frac{1}{2 c} \frac{d}{d t} \int\left(T^{i 0} x^{j}+T^{j 0} x^{i}\right) d^{3} \mathbf{x} \tag{14}
\end{equation*}
$$

Next, we remark that

$$
\begin{align*}
& \int \partial_{k}\left(T^{0 k} x^{i} x^{j}\right) d^{3} \mathbf{x}=\int\left(\partial_{k} T^{0 k} x^{i} x^{j}+T^{0 k} x^{i} \delta_{k}^{j}+T^{0 k} x^{j} \delta_{k}^{i}\right) d^{3} \mathbf{x} \\
&=\int \partial_{k} T^{0 k} x^{i} x^{j} d^{3} \mathbf{x}+\int\left(T^{0 j} x^{i}+T^{0 i} x^{j}\right) d^{3} \mathbf{x} \tag{15}
\end{align*}
$$

where the l.h.s. volume integral has an integrand which is a divergence and can be transformed into a surface integral that vanishes as above. Therefore,

$$
\begin{equation*}
\int\left(T^{0 j} x^{i}+T^{0 i} x^{j}\right) d^{3} \mathbf{x}=-\int \partial_{k} T^{0 k} x^{i} x^{j} d V=\int \partial_{0} T^{00} x^{i} x^{j} d^{3} \mathbf{x} \tag{16}
\end{equation*}
$$

and finally,

$$
\begin{equation*}
\int T^{i j} d^{3} \mathbf{x} \approx \frac{1}{2 c^{2}} \frac{d^{2}}{d t^{2}} \int T^{00} x^{i} x^{j} d^{3} \mathbf{x} \tag{17}
\end{equation*}
$$

We can use this result and the slow-motion assumption $T^{00} \approx \rho c^{2}$, where ρ is the mass density, to obtain

$$
\begin{align*}
& \bar{h}^{i j}(c t, \mathbf{r}) \approx-\frac{4 G}{c^{4} r} \int T^{i j}(c t-r, \mathbf{r}) d^{3} \mathbf{x}=-\frac{4 G}{c^{4} r} \frac{1}{2 c^{2}} \frac{d^{2}}{d t^{2}}\left[\int T^{00} x^{i} x^{j} d^{3} \mathbf{x}\right]_{\text {retarded }} \\
&=-\frac{2 G}{c^{4} r} \frac{d^{2}}{d t^{2}}\left[\int \rho x^{i} x^{j} d^{3} \mathbf{x}\right]_{\text {retarded }} \tag{18}
\end{align*}
$$

where the integrals are evaluated at the retarded time. The integral

$$
Q^{i j}=\int \rho x^{i} x^{j} d^{3} \mathbf{x}
$$

is the quadrupole tensor of the mass distribution, so that the solution can also be written in the form

$$
\begin{equation*}
\bar{h}^{i j}(c t, \mathbf{x}) \approx-\frac{2 G}{c^{4} r} \ddot{Q}^{i j}(t-r / c) \tag{19}
\end{equation*}
$$

GWs radiated by a rotating dumbbell

As an application of eq. 18), consider a dumbell, with two masses M at the end of a massless rod of length $2 R$, as illustrated in figure 1. The dumbell rotates in the $\left(x^{1}, x^{2}\right)$ plane with constant angular speed ω about its midpoint.

Figure 1: Example of a "dumbbell". In this case the stars in a binary system orbit one around the other in a circle of radius R (figure from S. M. Carroll, Spacetime Geometry, an Introduction to General Relativity Pearson, 2013).

Setting the origin of the coordinate system at the midpoint of the rod, the positions of the masses are

$$
x^{i}= \pm(R \cos \omega t, R \sin \omega t, 0)
$$

and we find

$$
\begin{align*}
{\left[\bar{h}^{i j}(c t, \mathbf{r})\right] } & =-\frac{4 G M R^{2}}{c^{4} r} \frac{d^{2}}{d t^{2}}\left(\begin{array}{ccc}
\cos ^{2} \omega t & \cos \omega t \sin \omega t & 0 \\
\cos \omega t \sin \omega t & \sin ^{2} \omega t & 0 \\
0 & 0 & 0
\end{array}\right)_{\text {retarded }} \tag{20}\\
& =\frac{8 G M R^{2} \omega^{2}}{c^{4} r}\left(\begin{array}{ccc}
\cos 2 \omega t & \sin 2 \omega t & 0 \\
\sin 2 \omega t & -\cos 2 \omega t & 0 \\
0 & 0 & 0
\end{array}\right)_{\text {retarded }} \tag{21}\\
& =\frac{8 G M R^{2} \omega^{2}}{c^{4} r}\left(\begin{array}{ccc}
\cos 2 \omega(t-r / c) & \sin 2 \omega(t-r / c) & 0 \\
\sin 2 \omega(t-r / c) & -\cos 2 \omega(t-r / c) & 0 \\
0 & 0 & 0
\end{array}\right) \tag{22}
\end{align*}
$$

This solution represents a gravitational wave with frequency 2ω. Both polarization components are equally represented and they are 90° out of phase, so that this is a circularly polarized gravitational wave.

It is easy to see that in the case of unequal masses M_{1}, M_{2}, and radii R_{1}, R_{2}, the previous result becomes

$$
\left[\bar{h}^{i j}(c t, \mathbf{r})\right]=\frac{4 G\left(M_{1} R_{1}^{2}+M_{2} R_{2}^{2}\right) \omega^{2}}{c^{4} r}\left(\begin{array}{ccc}
\cos 2 \omega(t-r / c) & \sin 2 \omega(t-r / c) & 0 \tag{23}\\
\sin 2 \omega(t-r / c) & -\cos 2 \omega(t-r / c) & 0 \\
0 & 0 & 0
\end{array}\right)
$$

We can use these results to find the order of magnitude of the amplitude of waves emitted by a laboratory-size apparatus. We assume here $M=1 \mathrm{~kg}, R=1 \mathrm{~m}, \omega=1 \mathrm{~s}^{-1}$. Moreover, to satisfy the far-field approximation, $r \gg c / \omega$, then the amplitude of the gravitational waves is

$$
h \approx \frac{8 G M R^{2} \omega^{2}}{c^{4} r} \ll \frac{8 G M R^{2} \omega^{3}}{c^{5}} \sim 10^{-52},
$$

which is totally undetectable with current technologies.

Further developments: GWs radiated by a rotating dumbbell

In the case of a binary star system with a large separation between stars (which the dumbbell with vanishing-mass rod approximates) and circular orbits, we can use the Keplerian formulas to obtain the frequency ω. With masses m_{1} and m_{2}, with orbital radii r_{1} and r_{2}, in the CM system the total momentum vanishes and we find

$$
\begin{equation*}
m_{1} r_{1} \omega=m_{2} r_{2} \omega \tag{24}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
m_{1} r_{1}=m_{2} r_{2} \tag{25}
\end{equation*}
$$

Moreover, the masses experience a centrifugal acceleration that must be balanced by the gravitational force, so that

$$
\begin{equation*}
m_{1} r_{1} \omega^{2}=m_{2} r_{2} \omega^{2}=\frac{G m_{1} m_{2}}{\left(r_{1}+r_{2}\right)^{2}} \tag{26}
\end{equation*}
$$

The latter formula can be rearranged to obtain

$$
\begin{equation*}
r_{1} \omega^{2}=\frac{G m_{2}}{\left(r_{1}+r_{2}\right)^{2}} ; \quad r_{2} \omega^{2}=\frac{G m_{1}}{\left(r_{1}+r_{2}\right)^{2}} \tag{27}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\omega^{2}=\frac{G\left(m_{1}+m_{2}\right)}{\left(r_{1}+r_{2}\right)^{3}} \tag{28}
\end{equation*}
$$

(a form of Kepler's third law). We shall develop these results further when discussing the radiation from compact binary systems.

