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To begin with, we partly repeat the calculation we already did to find the strain produced by
a rotating dumbbell, and apply the formula for the total emitted power. As before, we consider
a pair of stars with equal mass m in circular orbit about their common CM with orbit radius
r, as illustrated in figure [1| (note however, that in the main text we use m instead of M and r
instead of R). In this simple scheme, the stars rotate in the (x!,2?) plane with constant angular
speed w.

Figure 1: A binary star system. In this case the stars in the binary system orbit one around the
other in a circle of radius R (figure from S. M. Carroll, Spacetime Geometry, an Introduction to
General Relativity Pearson, 2013).

Setting the origin of the coordinate system at the CM, the positions of the masses are
x' = £(rcoswt, rsinwt, 0)

and we find the quadrupole tensor
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and the reduced quadrupole tensor
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Therefore,
(™" I ) = 128 m?riwS, (4)

and, finally, we find that this system emits energy as GWs at the rate
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It can be shown (do it as an exercise), that for unequal masses m; and ms, this equation can

be written in the form -
332G mim
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GW = 5 (mq + m2)2( 1+ 7) (6)

Newtonian model of the inspiral phase in a compact binary system

We are now interested in the fate of a close pair of compact objects: as the emit energy in
the form of GWs, they do this at the expense of potential energy and are gradually closer and
closer, speeding up to higher and higher angular frequencies. The initial smooth and stable
rotation eventually becomes a frantic race until the two object coalesce into one. This process is
described in a sketch drawn many years ago by Kip Thorn (figure .
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Figure 2: Drawing by Kip Thorne that illustrates the main phases of a compact binary coalescence
(CBC). Initially the pair rotates at a nearly constant frequency, but at a later phase the energy
loss due to GW emission is very fast, the frequency increases faster and faster while the object
rotate closer and closer (inspiral phase). This continues until the objects merger. Finally, the
remnant rings much like a bell with damped oscillations (ringdown).



We consider a non-relativistic two-body system with circular orbits about the center-of-mass
(CM). The masses are m; and mg, with orbital radii 71 and rs. Then, in the CM system the
total momentum vanishes, and therefore

miriw = maoraow (7)

ie.,
miry = marso (8)

The masses also experience a centrifugal acceleration that must be balanced by the gravitational
force, so that
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The latter formula can be rearranged to obtain
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2 2
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and therefore
2 _ G(mi+my)

(r1+1m2)3 (11)

(a form of Kepler’s third law), so that we can express the sum of radii as a function of total mass

and frequency
G 1/3
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Finally, the total energy of the system is
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Now notice that the moment of inertia of the system about the CM is, using eq. ,
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GW strain

We found earlier (see the handout on Generation of gravitational waves) that the strain in
the TT gauge of such a binary system is

2 oy 2 [ cos(Qwt+¢) sin(2wt+¢) O
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where D is the distance to the system and ¢ is a phase that includes retarded time and the
integration constant of the equations of motion of the pair of masses.

Using egs. @ and we find
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When dealing with compact objects like black holes or neutron stars it is useful to write the
masses in units of solar mass Mg = 2 x 1030 kg. Then, it turns out that the combination

GM,
CS

~5x 107N m kg~ !s?

pops up quite often. Then we obtain
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where we use units of solar mass for the masses m; and ms..

Shrinking of the orbit because of GW emission - 1

As the system emits gravitational waves its total energy decreases and the orbit shrinks. To
calculate this shrinkage we compute the instantaneous radiated power, and to this end we re-
place the expression of the moment of inertia and that of its rotation frequency to eliminate
both the moment of inertia and the spatial separation between the masses in the formula for the
radiated power:
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This radiated power corresponds to the rate of change of the total energy of the binary system

2/3
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and equating the two expressions we find
WBC2 _mma s B (26)
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or also
mims A 5 —11/3 dw

= — 27
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It is customary to define the “chirp mass” as follows:

— (m1m2)3/5 — i i w—11/3 diw 3/5 (28)
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Then, using the chirp mass and the emitted frequencyﬂ f =w/m we can write
A5 g ar\*"®
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This equation relates time and frequency, and is the only equation in the “GW150914 discovery
paper”.

Observational estimates

Obviously, we can also integrate the differential equation and find
256 G°/3 _ _
TW8/3/\/15/3 = (t—to) = fy 8/3 F8/3 (30)

where tg is the coalescence time and fj is the frequency at coalescence time (see below). There-

fore,
-3/8

_ 256 G5/3
f(t) = [fo 8% ?W8/3M5/3CT(t - to)} (31)
for ¢t < to (times before coalescence). Eq. can be expressed with the chirp mass in units of
solar mass as before
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Figure @ shows an example of frequency evolution for a system with m; = mg = 30Mg. The
corresponding signal in the time domain is shown in figure [4] (+ polarization only) and in figure

(both 4+ and X polarizations).

Neglecting the constant terms in eq. we find

256 G°/3 _
?TI‘S/SMW?’ - |t‘ ~ f 8/3 (33)
c
or also 5
1
M=~ S (34)
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1Recall that the emitted frequency is twice the orbital frequency.
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Figure 3: Time-frequency representation of the GW signal, as described by eq. (31)), for m; =
mg = 30Mg. The coalescence time is tg = 0.
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Figure 4: GW signal in the Newtonian approximation, for m; = ms = 30My and phase at
coalescence ¢y = 1 radian, + polarization only. The coalescence time is ty = 0. The amplitude
is scaled to its maximum.
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Figure 5: GW signal in the Newtonian approximation, for m; = mq = 30M and phase at coa-
lescence ¢y = 1 radian, both + (blue curve) and x (orange curve) polarizations. The coalescence
time is tg = 0. The amplitude is scaled to its maximum.

The maximum frequency fp in the merger can be estimated assuming that the distance
between the centers of the two masses is equal to the sum of the Schwartzschild radii (in the case
of a BBH), i.e.,

2G
Tty = ?(ml + ma) (35)

where Rg = (2G/c?)m is the Schwartzschild radius for a mass m. At this separation the frequency
and the emitted power are at a maximum
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where M = my + mo is the total mass of the system which is directly related to the maximum
frequency of the chirp.

Since ( o
mi1meo
MO =212 38
N (3)
we can use the observed chirp mass and total mass to obtain the system of equations
myimy = MY3M5/3 (39a)



from which we find the individual masses

M 1
mia = 1 LA =

with the mass gap

AM = /M2 — 4M5/3M1/3.

The radiated power as a function of time can also be estimated
5/3 \ —3/8
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Shrinking of the orbit because of GW emission - 2

From Kepler’s third law
s  GM
W= h

where M = mj; + mg and R = ry + 79, we find

de—w = 73—GM@
dt R dt

or also
dR 2 R' dw 2 RY? dw

dt T 3GMYdt T 3G dt
We found earlier that
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and therefore

dat 5¢5

(equivalent to the differential equation that we have already integrated above), therefore
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Maximum radiated power

The maximum radiated power for a system with generic masses is
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where ¢ = mgy/m;.

The maximum is attained for ¢ = 1:
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Appendix: naive black hole calculations

The existence of black holes was predicted long before the advent of GR, from simple dynamical
calculations.

In a gravitational field the escape velocity is defined as the threshold velocity that allows
escape to infinity, so that the initial kinetic energy is equal to the gravitational potential energy

at the starting radius:
1 GM
5777/1}2 = Tm, (56)

v= \/@. (57)

When the escape velocity equals the velocity of light, nothing can escape, not even light. This
happens at the Schwartzschild radius Rg, such that

therefore

_2GM

RS 5 (58)

C

and rather surprisingly, this result coincides with the GR calculation for the Schwartzschild
metric (non-rotating black hole).

When we express the mass in units of solar mass (Mg ~ 2 x 10~3%kg),

_ 2GMo(M/Mo)

Rs .

; ~ 3 km x (M/Mpg), (59)

so that a black hole with the mass of our Sun has a 3 km radius.
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