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In this handout I derive the formula for the antenna patterns of a Michelson-type gravitational-
wave detector for a pure + polarization. I start with a derivation of the three-term formula,
adapted from B. Schutz, A First Course in General Relativity, 2nd ed., Cambridge University
Press (2009).

The three-term formula

The derivation of the three-term formula is very close to the time-domain analysis of a Michelson
interferometer developed in the handout Noise Sources — 2. We consider a pulse of light travel-
ing between a freely-falling light source and a freely-falling mirror. The segment joining the two
objects defines the z-axis, while a GW source lies on the z-axis. The null line interval is

ds® = Adt* — [1 + hy (t — z/c)]dz?® — [1 — hy (t — z/c)|dy? — dz* = 0, (1)

which means that with the light moving only along the z-axis, and neglecting the spatial phase
change (this means that the wavelength of the GW is much longer than the distance L between

source and mirror) we find
Adt* = [1 + hy (t)]dz?, (2)

and therefore

it = %\/1 (e ~ {1 + ;h+(t)] da. )

c

A pulse that leaves the source at (proper) time tg reaches the mirror at time ¢; such that

L 1 L 1 [F
tl’rl'ﬁto-f—/ — 1+*h+(t) d$:t0+*+7/ h+(t0+$/€)dl’ (4)
0o C 2 c 2/

where the integrals have been approximated as in the handout Noise Sources — 2. Considering
also the backward path from mirror to source, the return time t, is

2L 1 (F 1 [F
to =ty + — + — hy(to+z/c)dx + — hy(to+ L/c+ x/c)dz. (5)
c 2c Jy 2¢c Jy
Taking the derivative with respect to the start time ¢y, we find
dts 1 F, 1 L,
d—tozl+2—c ; h+(t0+z/c)dx+2—c ; B! (to+ L/c+ x/c)dx (6)
1 1
=1+ 5 [he(to+ L/c) = hy(to)] + 5 M- (fo + 2L/c) = hy.(to + L/c)] (7)
1
=l+3 [hy(to +2L/c) — hy(to)] (8)



The last result holds for a plane gravitational wave with a wave vector parallel to the z-axis.
Next, we generalize this result to a rotated system, where the gravitational wave impinges on
the source-mirror system with an angle 6 with respect to the z-axis, as in figure[I} The rotation
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Figure 1: Reference frame for the treatment of an incoming gravitational wave with angle 6 with
respect to the z-axis. The left panel shows a perspective view. The right panel shows a view
along the y-axis: the reference frame is rotated about y with respect to that with direction of
the wave along the z-axis.

of a covariant vector about the y-axis is represented by the (space) rotation matrix

‘ cos) 0 sinfd
R = 0 1 0 (9)
—sinf® 0 cosf

therefore the space part of the strain of a 4+ polarized GW

h 0 0
hij=10 —hy O (10)
0 0 0
transforms to
rot __
hi? - Rsz?hm'm (11)

in particular, the strain along the x-axis transforms to
RO = R™ R" Ay = hy cos? 6.
In the rotated frame, the spatial part of the phase change of the gravitational wave is
(zcosf —xsinb)/c

so that the spatial phase change measured along the trajectory of the beam of light (z = 0) is
just zsinf/c, therefore we can modify eq. as follows

2 L
t1 =to+ L + COQS i / hylto + 2(1 —sin8)/cldx (12)
C C 0

The return leg is similar, with the difference that the spatial phase must be counted backwards
—(L — x)sinf/c¢, and we find

2L cos?d
to =to+—+
c 2c

2 L
COSC : / hylto+L(1—sin®)/c+x(1+sin ) /cldx
0

/0 hy[to+z(1—sin0)/c|dx+ 5
(13)



Taking once again the derivative with respect to the start time tq, we find

2 L 2 L
dty _ M/ W, [to + z(1 — sin0) /cJdz + = 9/ W, [to + L(1 — sin ) /c + x(1 + sin 0) /]
dto 2C 0 2C 0
(14)
cos? 6 {h+[t0 + L(1 —sin®)/c] — hy(to)
= 1 + r
2 1—sinf
+h+[to + L(1 —sin@)/c+ L(1 +sinb)/c] — hyfto + L(1 —sinh)/c] (15)
1+sinf
=1+ % {(1 +sinf)hy[to + L(1 —sin®)/c] — (1 + sinf)h(to)
+(1 —sin@)hyfto+2L/c] — (1 —sin@)h4[to + L(1 —sinf)/c|} (16)

=1+ % {(1 —sin®) hyfto+2L/c] — (1 +sinB) hy(to) + 2sin hy[to + L(1 —sin6)/c|}
(17)

the last line is the three-term formula.

The antenna patterns

First, we expand the three-term formula for small L

dtz _ 1+ % {(1—sinf) hyfto+2L/c] — (1 +sin8) hy(tg) +2sinb hy[to + L(1 —sinf)/c]}

G =
(18)
1 ) 2L . . . ) L.
~1+ 5 {(1 —sin6) [h+(t0) + 7h+(t0) — (L +sin®) hy(to) +2sinf |hyfto] + (1 —sin 9)ch+(to)] }
(19)
=1+ % cos? 0h (to) (20)

and we note that the angular factor comes from the rotation of the coordinate system, and that
the whole expression can be written in coordinate-free form

dty
dtg

r-x)

L. . .
=1+ Zhyélel (21)
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and similarly for the y arm of an interferometer with  and y arms

dty
dtg

L. .

y—arm
so that the global response of the interferometers is

dot_dty
dto  dto
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Finally, integrating the last equation, we find

L VR
ot = Ehij (enel —éél) (24)

Now recall that the definition of the polarization tensors in the TT frame is
e, =éél —eyeg{, ex =€, eJ +eye;, (25)

and that the generic expression for the strain is
h(t) = hy(t)er + hy(t)ex, (26)

then we see that expression can be recast in the simpler form

1
when we define the detector tensor d with components
dij = L (e,e] —é,el), (28)

or in the even more compact expression
1
6t=-h:d (29)
c
where h : d = h;;d;;. Turning now to the differential length change this formula becomes

5L = %h :d (30)

Figure [2 shows the geometry of the situation we are describing. In this case the polarization
tensors in the TT frame are obtained from the vectors labeled &, etc., shown in the left panel.
However, this is a very special choice, where the &% vector is parallel to the z-axis of the detector
frame. In general, the system in the TT frame is rotated by an angle ¢, as shown in the right
panel of figure

The polarization tensors in the rotated system are defined by
= E P, =t @)

and since the effect of the rotation is

& = €, cosY + €, siny (32)
B=—é,siny + é, cosp (33)
we find

e =a'al — 5y (34)

= (é% cos + ey sine))(é2 cos) + éé sine) — (—é% siny + é; cos ) (—éd sinp + éé cos )
(35)
= ¢l ¢l cos 2 + & eJ sin 2¢) + é; sin 2¢) — ¢, e] cos 2t (36)
= e cos 2¢ + e sin 2 (37)
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Figure 2: The relative orientation of the sky and detector frames (left panel) and the effect of a
rotation by the angle ¢ in the sky frame (right panel), from Sathyaprakash and Schutz, Physics,
Astrophysics and Cosmology with Gravitational Waves, Living Rev. Relativity, 12 (2009), 2.

with a similar result for €%; summarizing

€4 = €4 co8 21 + ey sin 2¢ (38)
€x = —e, sin 2y + ey cos 2¢ (39)

Spelling out the differential length change , we see that it is a function of the angles 6,

¢, and v, i.e., 5
L
22 = Fy(0,6,0) hi (6) + Fu(6,6,0) (1) (40)

where the coefficients F, and Fx are the antenna patterns of the interferometer. Carrying out
calculations similar to those above, it can be shown that

1

F, = 5(1 + cos? ) cos 2¢ cos 2¢p — cos 6 sin 2¢ sin 21) (41)
1

Fy = 5(1 + cos? ) cos 2¢ sin 2¢) + cos 6 sin 2¢ cos 21) (42)

Figure [3| shows a graphic representation of F; and F.
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Figure 3: Antenna patterns F (left panel) and F (right panel).



