
Diffusive processes and Brownian motion

A liquid or gas consists of particles----atoms or
molecules----that are free to move. We shall con-
sider a subset of particles, such as a dissolved solute
or a suspension, characterized by a number density

∆N
∆V

  =  n(x, y, z, t) (1)

that in general depends on position and time.

The flux of particles across a plane perpendicular
to the x-axis1 is the number density times the mean
velocity in that direction, 

jx  =
df

  n 〈vx〉 . (2)

If the particles are moving randomly, then it is clear
that the number that cross the plane (moving in
the negative x-direction) must be proportional to
the density immediately to the right of the plane
(say, at position x + δx ⁄ 2); conversely, those mov-
ing to the right must be proportional to the density
just to the left of the plane (say, at x − δx ⁄ 2) so the
flux will be

jx δx  =  D 

n(x − δx ⁄ 2)  −  n(x + δx ⁄ 2)



≈  −D 
∂n
∂x

 δx .

That is, the equation

jx  =  −D 
∂n
∂x

(3)

defines the diffusion constant, D.

Since there is nothing special about the x-direc-
tion2 we can express the flux of particles resulting
from diffusion as3

j
→
  =  −D ∇n . (3′)

However, if the particles are neither created nor
destroyed they must obey a conservation law4

∂n
∂t

  +  ∇ ⋅ j
→
  =  0 ; (4)

hence by substituting the flux resulting from diffu-
sion into the conservation equation we obtain the
diffusion equation

∂n
∂t

  =  D ∇2n . (5)

Many physical phenomena are described by equa-
tions of this form, including heat conduction in a
solid, transport of radiation through a dense at-
mosphere, and movement of neutrons through
fissionable material (or shielding, for that matter).
Since the underlying physical behavior (that the
diffusion equation models) is the same in these
examples, it is not surprising they can be described
by the same equation.

1. Random walk model of diffusion
To get a feeling for the physical meaning of diffu-
sion we shall now examine several different ways
to describe this phenomenon. A diffusing particle
is subjected to a variety of collisions that we can
consider random, in the sense that each such event
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1. That is, the number of particles per unit area per unit time that cross the surface.
2. Here is another example of the use of symmetry to generalize a result.
3. Eq. 3′ is known as Fick’s Law.
4. The conservation law can be verified using Gauss’s Theorem.



is virtually unrelated to its predecessor. It makes no
difference whether the particle is a molecule of
perfume diffusing in air, a solute molecule in a
solution, a colloid in a suspension, a neutron in a
nuclear reactor, or a photon beating its way out-
ward from the center of a star.

One mathematical model used to describe such a
process is the random walk5. In one dimension it

looks something like this: a clock ticks at intervals
δt; at each tick, the particle moves one step to the
left (with probability α), one step to the right (with
probability β), or remains where it is (with prob-
ability6 1 − α − β). Thus, using the rules for com-
bining probabilities we find that the probability for
the particle to be at x (literally, in the interval
[x, x + δx]) at time t+ δt is

p(x, t + δt)  = (6)

α p(x + δx, t)  +  β p(x − δx, t)

  +  p(x, t) 

1 − α − β


 .

For now we shall consider the case where leftward
and rightward movements are equally likely, i.e.
α = β : in that case, expanding both sides in Tay-
lor’s series we find

∂p
∂t

  =  α 
(δ x)2

δ t
  

∂2p
∂ x2  +  O (δt)  +  O (δx4)

thus, if we define a diffusion constant 

D  =  α 
(δ x)2

δ t

and extend the same idea to 3 dimensions, we
derive the diffusion equation

∂p
∂t

  =  D ∇2p . (Einstein) (7)

Of course this is the equation for the probability of
a single particle being in the volume element

dx dy dz around the point x
→

 . We may well ask how

the probability p(x
→
, t) is related to the number

density n(x
→
, t) . In some sense it is obvious that if

the behavior of a single particle is described by

p(x
→
, t), then a system of N independently moving

particles is carrying out a measurement of p(x
→
, t),

and that we can estimate this probability in terms
of the number density via

p(x
→
, t)  ≈  

n(x
→
, t)

N
 . (8)

The mean and variance of the position
In order for p(x

→
, t) to represent a probability den-

sity, it must satisfy several restrictions. First, it must
be positive, since it is no more possible to define a
negative probability than a negative concentra-
tion. Second, the probability of the particle being
somewhere is unity, i.e.

∫∫∫ d3x p(x
→
, t)  =  1 . (9)

Equation 9 is sometimes called a normalization con-
dition.

The mean, or expected, value of----say----the x-co-
ordinate of a particle is defined to be
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5. Sometimes called a ‘‘drunkard’s walk’’.
6. Since it can only perform three mutually exclusive actions, the probabilities must sum to unity.



〈x〉  =
df

  ∫∫∫ d3x p(x
→
, t) x ; (10)

from the diffusion equation we can deduce that

d
dt

 〈x〉  =  D ∫  
−∞

∞
dx x 

∂2q(x, t)
∂x2   =  0

where we have defined

q(x, t)  =  ∫∫ dy dz  p(x, y, z, , t) .

Since

d
dt

 〈x〉  =  0

we see that

〈x〉  =  constant.

However, even though the average position of a
diffusing particle does not change, the variance of
its position is a function of time. The variance is
defined by

Var (x)  =
df

  〈(x − 〈x〉)
2
 〉 (11)

≡  〈x2〉  −  〈x〉2 .

Once again working directly with Eq. 7 (the diffu-
sion equation) we see that

d
dt

 Var (x)  =  D ∫  
−∞

∞
dx 

∂2q(x, t)
∂x2  (x − 〈x〉)

2

≡  2D , (12)

or

Var (x)  =  2D t . (13)

That is, the expected mean-square deviation of a
particle from its initial position increases linearly
with time. Put another way, the distance a diffus-
ing particle travels in time t is proportional to √t.

2. Stochastic differential equation
We can take another approach to the random walk
by analyzing the motion of an object subject to a
time-dependent random force f(t). Newton’s Sec-
ond Law yields the differential equation

mx
..
  +  γ x

.
  =  f(t) (Langevin) (14)

where we have included viscous drag7. Changing
variables to v = x

.
 we may write the solution to the

equation

v
.
  +  

γ
m

 v  =
df

  v
.
  +  

1
τ

 v  =  
f(t)
m

as

v(t)  =  v0 e−t ⁄ τ  +  
1
m

 e−t ⁄ τ  ∫ du eu ⁄ τ f(u)
0

 t
.

Now what do we mean by a ‘‘random force’’? If we
could observe a system described by the above
equation many times, each time the force would
be a different function of time. Suppose we were
to average over K experiments:

〈 f(t) 〉  =
df

  
1
K

 ∑ 
k=1

K

  fk(t) .

If the force has no propensity to move an object in
one direction rather than the other, it must be true
that 〈 f(t) 〉  =  0 . Thus the average velocity is just

〈v(t)〉  =  v0 e
−t ⁄ τ, (15)

which for times short compared with τ is whatever
velocity the object had before the force began to
act; but for long times viscous drag decreases it
asymptotically to zero.
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7. Stokes’ Law, for example, gives the drag on a sphere of radius r as (6πηr)v.



Next consider the mean-square velocity: we see
that an object subject to a random force will even-
tually acquire mean-squared velocity

〈v2〉  =v0
2  e−2t ⁄ τ  +  (16)

∫  du e(u − t) ⁄ τ

0

t
  ∫  dw e(w − t) ⁄ τ

0

t
 
〈f(u)f(w)〉

m2

Now what else can we say about the ‘‘autocorrela-
tion function’’

g(u,w)  =
df

  〈f(u) f(w)〉 ?

By definition it is symmetric: 

g(u, w)  =  g(w, u) ;

moreover, if the random force is to characterize
thermal equilibrium at a definite temperature, T,
there can be no absolute dependence on time, that
is, 

g(u+τ, w+τ)  ≡  g(u, w) .

For this to be true,

g(u, w)  =  g(u − w) .

Finally, since the forces must fluctuate in sign (in
order for them to average to zero) it must be the
case that g(s) is largest for s=0 and falls rapidly as
|s| increases. The behavior of a typical correlation
function is shown below.

If the random force fluctuates on a time scale short
compared with the relaxation time τ, we may
approximate it by ‘‘white noise’’ (in which all fre-
quencies are equally represented in the power
spectrum8), giving the autocorrelation function

〈f(u) f(w)〉  ≈  σ2 δ(u − w) . (17)

For times long compared with τ we find

〈v2〉  →  
σ2

2mγ
 . (18)

If we note that in a thermal bath at temperature T
the average kinetic energy (in one direction) of a
particle of mass m is9

1
2

 m 〈v2〉  =  
1
2

 kT

we may evaluate σ2 as

σ2  =  2γ kT .

What does this have to do with diffusion? Since we
know the velocity in terms of the driving force, we
may integrate with respect to time to find the
position:

x(t)  =  x0  +  ∫  du v(u)
0

t
 ; (19)

for long times the mean position is

〈x〉  →  x0  +  v0 τ ,
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8. Equation 17 will be derived in an Appendix.
9. This is the equipartition hypothesis of statistical mechanics. Alternatively we may regard it as a definition

of temperature.



that is, the mean position is constant (as was
predicted by the diffusion equation).

What about the variance of the position? A simple
calculation based on the preceding assumptions
(regarding the statistical properties of f(t) ) yields
the asymptotic formula

〈

x(t) − 〈x〉


2〉  →  

2kT
γ

 t (20)

from which we may conclude that the diffusion
constant is

D  =  
kT
γ

 . (21)

Equation 21 was first given by Einstein. 

3. Thermal ‘‘force’’ and osmotic pressure
Einstein’s starting point for the derivation of Eq. 21
was somewhat different from that given here. He
used the fact that the osmotic pressure of a solute
in a dilute solution10 

P  =  nkT (22)

is identical in form to the perfect gas law. 

How are osmotic pressures measured? To do this
we need a semi-permeable membrane----that is, one

through which molecules of the solvent can pass

freely, but that blocks molecules of the solute.
Many biological phenomena arise from mem-
branes permeable to some molecules but not to
others, so this is a subject worth study.

If we imagine such a membrane separating a solu-
tion containing the solute from a region of pure
solvent, the solute particles exert extra pressure on
the side where they are present, and the resulting
force can be measured.

Einstein then visualized the net force acting on a
thin slab, of thickness dx and area A, in a solution
of nonuniform density. In the situation illustrated
below. The thermodynamic force acting on the
slab is

fx  =  A p(x)  −  A p(x + dx)

= A kT 

n(x)  −  n(x + dx)


The x-component of the thermodynamic force
acting on the volume Adx is then

fx  =  −kT  
∂n
∂x

 Adx ,

or more generally,

n f
→
  =  −kT ∇n , (23)

where we have replaced the volume Adx by the
specific volume, 1/n.

In the presence of viscous drag γ, the (mean) drift
velocity will be

〈 v
→
  〉  =  

f
→

γ

corresponding to particle flux

j
→
  =  n 〈 v

→
  〉  =  

n f
→

γ
  =  −  

kT
γ

 ∇n . (24)

Comparing with Eq. 3′ we find Einstein’s result,
Eq. 21. 

 n(x)         n(x+dx)

dx
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10. This was discovered empirically by van’t Hoff in 1887.



4. Brownian motion and diffusion
Historically, the importance of Einstein’s deriva-
tion of the diffusion constant in terms of viscous
drag and the Boltzmann constant k was that it
offered a way to estimate Avogadro’s number via

NA  =
df

  
R
k

 .

Einstein proposed observing the Brownian motion
of microscopic spheres----large enough that the
idea of viscosity applies to their drag, but small
enough that they would be subject to observable
fluctuations in position (resulting from the statis-
tical fluctuations in numbers of molecules hitting
from one side or another, in a given time). For such
a sphere the drag coefficient is given by Stokes’
Law:

γ  =  6π η r

where η is the coefficient of viscosity and r the
radius of the sphere. Since these are measureable
quantities; and since the diffusion coefficient can
be measured by observing the behavior of a large
number of such particles with respect to time,
Boltzmann’s constant k can be measured. The
French experimental physicist J.B. Perrin received
the Nobel Prize of 1926 for his measurements of
NA (applying the ideas of Einstein).

5. Diffusion across a synapse
A synapse is a junction between an axon and a
nerve cell, muscle or organ. Although the trans-
mission of information across the junction can take
place as an electrical signal, more usually when the
impulse travelling down an axon reaches a synap-

tic plate a neurotransmitter (that is, a specialized
chemical) is emitted that must diffuse across the
junction, which is typically 2×10−6 cm, or 200 Å
across. It would be interesting to know how long
the chemical signal takes to cross the junction.

We may imagine the process as one-dimensional
diffusion. Dimensional analysis or alternatively,
the random walk picture, tells us that the mean-
square distance scales with time as

〈x2〉  =  2D t

where D is the diffusion constant. Putting in a
distance 200 Å and a diffusion constant charac-
teristic of organic molecules,

D  ~  2×10−6 cm2/sec ,

we find

t  ~  10−6 sec.

That is, the synaptic time delay is negligible com-
pared with the delay resulting from the speed of a
neural pulse, ~27 m/sec.

6. How a cell eats
As Purcell has shown11, because the Reynolds
number for a cell-sized object is so low, a cell

0.02µ
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11. E.M. Purcell, Am. J. Phys. 45 (1977) 3-11.



cannot pursue food because the food simply is
pushed out of the way. Therefore a cell in the a
nutrient medium receives its food by diffusion.
Bacterial chemotaxis, as Berg12, and Berg and Pur-
cell13 have shown takes place primarily to enable
a cell to move to a place where the feeding (by
diffusion!) is richer.

Now what applies to a 1µ bacterium also applies
to a 10µ cell in the human body. Consider, e.g. a
spherical cell receiving its food by diffusion. As-
sume that any food molecule touching the cell
membrane is immediately removed from the me-
dium, either by adhesion or ingestion. Then the
concentration of such molecules at the cell’s sur-
face is zero. Conversely, assuming nutrient is being
supplied a long way away from the cell, in equilib-
rium (that is, ∂c ⁄ ∂t  =  0) the concentration at
large distances is some constant, c∞ .

A current

j
→
  =  −D∇c

flows toward the cell, giving the net rate of inges-
tion as

J  =
df

  
dN
dt

  =  − ∫∫
r=a

  j
→
 ⋅ dS

→
 . 

Because the concentration is time-independent,
the diffusion equation reduces to the Laplace
equation. By symmetry, for a spherical cell the
concentration can depend only on the radial dis-
tance r. The boundary conditions are

c(r=a)  =   0
lim

r → ∞
  c(r)  =  c∞  .

Defining c(r)  =  φ(r)  +  c∞ we seek a solution of
the Laplace equation that has a certain value at

r=a and vanishes at ∞ . We do not need the
solution inside the cell radius. From elementary
electrostatics we see the solution is

φ(r)  =  −  c∞ 
a
r
 ,

or

c(r)  =  c∞ 

1  −  

a
r



 .

The flux is then in the inward radial direction,
giving the cell’s rate of ingestion as

J  =  4πa2 Dc∞ 
a
a2  ≡  4πD c∞ a .

The important point to notice is that the rate of
ingestion is proportional to the linear dimension of
the cell, rather than to its area. Although this is a
result we could have obtained (absent the 4π)
dimensionally, it is worth noting that it arises from
the probabilistic nature of diffusion. Once a mole-
cule has wandered within ingestion range of the
cell’s surface, it remains in that vicinity for some
time. So the cell gets numerous chances to snag it.

For a disk-shaped cell of radius a one can solve the
corresponding electrostatic problem of an ellipsoi-
dal cell in ellipsoidal coordinates and let two axes
of the ellipsoid become equal and set the third to
zero. This is done in Smythe14. The result is, for a
two-sided disk,

J  =  8D c∞ a

and for a one-sided absorbing disk, just half that.
Berg and Purcell give the result for a spherical
non-absorbing cell of radius a whose surface is
covered with N absorbing disks of (much smaller)
radius s:
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12. H.C. Berg, Nature 254 (1975) 389-392.
13. H.C. Berg and E.M. Purcell, Biophysical Journal 20 (1977) 193-219.
14. William R. Smythe, Static and dynamic electricity, 3rd ed. (McGraw-Hill Publishing Co., Inc., New York,

1968).



J  =  4π D c∞ a  ×  
Ns

Ns + πa
 .

The point is that because only the linear dimension
is involved, the absorbing sites can occupy a small
fraction of a cell’s surface area and yet result in a
cell whose ingestion efficiency is close to maximal.

This somewhat surprising result explains how cells
efficiently absorb a broad spectrum of different
molecules without having their surfaces exces-
sively cluttered with specialized receptors.
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