

CDF offsite computing

What's new since October 30, 2003

Outline

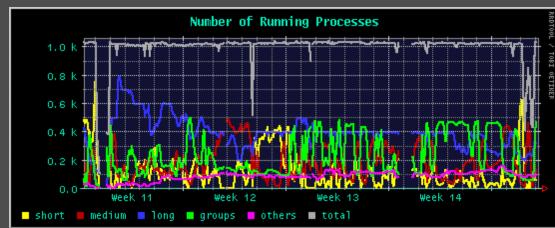
- This talk is about
 - What has been done
 - What hardware is in use now
 - What remote institutions are coming online in immediate future.
 - Not a description of international commitments/plans, that is up to this committee
- 2 type of offsite resources:
 - Those funded for usage by one institutions
 - Those funded for CDF-GRID
 - So far we are tying together the former ones.
 - Hope this committee will give us the latter ones.

Goal reminder Cfr. Frank Wuerthwein's talk at last IFC meeting

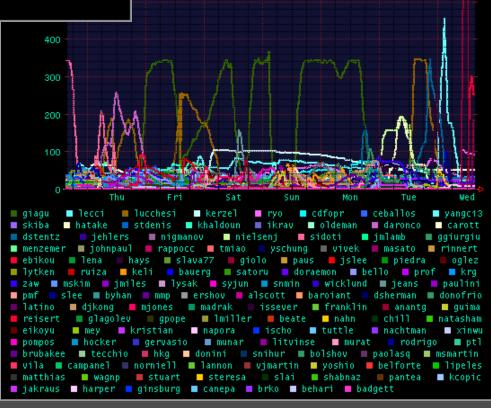
- For 2005, 2006 ... move offsite 50% of analysis load
 - > Significant contribution also desired in 2004
- Offsite = addition to FNAL's 1.5M\$/fy budget
 - US + non-US
- Do it via CAF's, SAM, JIM
 - > We have a plan on how to do it
 - We have most software tools already developed and under use/test
 - We are working on the other tools
 - We = CDF + FNAL CD + PPDG, tens of people working on this
 - ➤ It is a large project

What's happened

- 2 CDF-GRI D workshops (Jan 20-22, Apr 1-2, 2004)
 - > Focused on installation of a handful of sites
 - Move from expert-only to assisted install/operation
 - Feed back into documentation and streamlining of procedures for more sites
 - e.g. SAM from 2 days to 10 min
- Start to tackle operational issues with first production sites coming online, now have weekly CDF-Grid operation meetings
 - I taly, Korea and Taiwan already up
- More production sites rolling in by summer
 - > UCSD, MIT
 - > Japan, Spain?
- More institutions contributing with MC production, even if not opening farms to all users (yet)
 - > Canada, Rutgers, UK



CDF-GRID status


- User's MC at remote sites = reality
 - Run on dCAF
 - Have output sent to FNAL's desktop
 - already used for real work
- Organized MC production
 - Offsite resources can be exploited "now"
 - Mostly a matter of operational issues anyhow
 - bookkeeping
 - error handling
 - output archiving/cataloguing
- Analysis on remote-copied data samples
 - Tools in place, working in Germany since ~1 year
 - Other sites slowed by lack of large local disk
- Accounting still to be developed but will come as extension of available tools

Monitor 1: what, who

Each remote CAF runs software that makes this kind of plots on the web

Number of Running Processes

Monitor 2: to do what

Analysis code logs data set access

```
Data access summary
Datasets: aexp08, hbot0h
INPUT data summary:
          RecRead EvtRead RO(sec) OC(sec) Size(MB) KbPerRec KbPerEvt FailOpen
Aggregate 7.8e+04 7.8e+04
                          26 18405 8.3e+03
Average
          1.6e+04 1.6e+04
                              5.2 3681.0 1.7e+03
                                                              108.7
OUTPUT data summary:
          RecWrote EvtWrote OC(sec) Size(MB) KbPerRec KbPerEvt
Aggregate 2.3e+05 2.3e+05 55308 2.5e+04
                                                        111.5
           4.7e+04 4.7e+04 11061.6 5.1e+03
                                               111.4
```

- CAF software collects name of data set accessed by users, amount
 of data read, data written, cpu time, real time
- Existing tools allow to tell
 - What resources are there
 - Who is using them
 - To look at what data

Ship is sailing

- Cdf grid is de-facto our working environment and hypothesis
- Analysis farm is built/developed to be clonable
- DataHandling has dissolved into SAM
- Larger and larger effort being spent in tools that are
 - Usable both on- and off-site
 - SAM
 - remote / multi-level db servers
 - Export of former "fnal only" facilities
 - dCache
 - storage on FNAL's tape robot from remote farms
- GridKa in Karlsruhe/Germany already an autonomous data analysis center based on SAM
- I NFN will follow in ~1 month.

An example: CNAFCAF farm in Italy (pick this because I know it better)

- Built at new INFN "Tier1" center at CNAF
 - > 250GHz, 5TB now
 - Mainly used for MC production
 - Computing room ready in January 2004
 - Running as a clone of FNAL's CAF
 - Running SAM with 3TB local cache and 1 Gbit WAN
 - Provides working environment identical to FNAL
 - Data import ~1TB/day demonstrated on day-long transfers
 Equivalent to CDF data logging rate
 - Open for access already to all CDF menbers in transparent way, but batch priority higher for I NFN physicists
- I mportant human contribution
 - One FTE since ~January for sw install/maintenance/operation
 - ~0.5 FTE for hw install/maint/debug
 - ➤ Much time spent on optimizing disk → cpu data flow

CNAFCAF future

- Hardware expansion already in procurement phase
- I taly = large group with many physics interests, need much more disk to be able to move significant analysis effort (cfr. GridKa)
- CNAF will have large common CPU pool on PBS farm
 - > CDF will be able to access it, but need new software tools
 - One position for CDF being filled at CNAF
- Full GRI D-dification
 - So far founded by INFN for INFN physicists
 - > Already proving to be useful for others
 - heavy MC production ran by physicists at Winsconsin and SanDiego
 - ➤ Addition of resources dedicated to CDF-GRID (i.e. in fair share across all collaboration) no problem technically
 - ➤ Taking over 15% of cdf analysis load (vs. 50% that cdf would like to move offsite) is ~40% increase to farm size over what is plausible for INFN-only. Well within what we can manage

Hardware resources in CDF-GRID

site	GHz now	TB now	GHz Summer	TB Summer	Notes
INFN	250	3	950	30	Priority to INFN users
Taiwan	100	2.5	150	2.5	
Japan	-	-	150	6	
Korea	120	-	120	-	
Germany GridKa	~200	16	~240	18	Min. guaranteed CPU from x8 larger pool. Open to all by ~Dec (JTM)
Cantabria	30	1	60	2	~1 months away
UCSD	280	5	280	5	Days away. Pools resources from several US groups. Min guaranteed from x2 larger farm (CDF+CMS)
Rutgers	100	-	400	-	In-kind, will do MC production
MIT	-	-	200	-	~1 month away
Canada	240+	-	240+	-	In-kind, doing MC production, access to larger common pool

Conclusion

- CDF is building a MC and Analysis grid
- It is a lot of work for fnal/cdf caf/sam/dh/db/jim teams
- People are working hard for this:
 - I mplement and use an analysis grid 4 years before LHC
 - Working in close relation but not as part of LCG (so far)
 - LHC will benefit from feedback and user's case
 - Not obvious that code developed for CDF will be part of LHC grid nor viceversa
- Clear commitment and timelines for deployment of significant offsite resources makes this effort more appealing and add deadlines to developer's motivation